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a b s t r a c t

The 2-Opt heuristic is one of the simplest algorithms for finding good solutions to the metric Traveling
Salesman Problem. It is the key ingredient to the well-known Lin–Kernighan algorithm and often used
in practice. So far, only upper and lower bounds on the approximation ratio of the 2-Opt heuristic for
the metric TSP were known. We prove that for the metric TSP with n cities, the approximation ratio
of the 2-Opt heuristic is

√
n/2 and that this bound is tight.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the Traveling Salesman Problem (TSP), we are given n cities
with their pairwise distances. The task is to find a shortest tour
that visits each city exactly once. The Traveling Salesman Problem
is one of the most intensely studied problems in combinatorial
optimization. It is well known to be NP-hard [4]. Without any
additional assumptions, the Traveling Salesman Problem is also
hard to approximate to any number that is polynomial in n [11].
The metric TSP is a special case of the TSP where the distance
function satisfies the triangle inequality. The metric TSP is also
NP-hard [6]. Therefore, a lot of time has been spent to find
polynomial time algorithms with a small approximation ratio for
the metric TSP. In 1976, Christofides [3] proposed an algorithm
for the metric TSP with an approximation ratio of 3/2. To date,
no polynomial time algorithm with smaller approximation ratio
is known.

For real-world instances appearing in practice, it turns out
that many simple algorithms often find better solutions than
Christofides’ algorithm (see e.g. [1,5,10]). One of these algorithms
is the 2-Opt heuristic, which is the key ingredient to the well-
known Lin–Kernighan algorithm [8]. Starting with an arbitrary
tour, the 2-Opt heuristic repeatedly replaces two edges of the
tour by two other edges, as long as this yields a shorter tour. The
2-Opt heuristic stops when no further improvement can be made
this way. A tour that the 2-Opt heuristic cannot improve is called
2-optimal.

Experiments on real-world instances have shown that the
2-Opt heuristic applied to a greedy tour achieves much better
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results than Christofides’ algorithm (see e.g. Bentley [1]). The ex-
act approximation ratio of the 2-Opt heuristic for metric TSP was
not known so far. In 1987, Plesník [9] proved a lower bound of√
n/8. In 1999, Chandra, Karloff, and Tovey [2] presented a proof

showing an upper bound of 4
√
n. In 2013, Levin and Yovel [7]

observed that this proof yields the value 2
√
2n. This leaves a gap

of factor 8 between the upper bound 2
√
2n and the lower bound√

n/8. Our main result determines the exact approximation ratio
of the 2-Opt heuristic:

Theorem 1. The length of a 2-optimal tour in a metric TSP instance
with n cities is at most

√
n/2 times the length of a shortest tour and

this bound is tight.

As the 2-Opt heuristic always returns a 2-optimal tour and the
2-Opt heuristic may start with any tour, we immediately get:

Corollary 1. The 2-Opt heuristic for metric TSP instances with n
cities has approximation ratio

√
n/2 and this result is tight.

To prove Theorem 1, we show in Section 3 that the length of a
2-optimal tour in a metric TSP instance is bounded by

√
n/2 times

the length of a shortest tour. In Section 4, we provide an infinite
family of metric TSP instances and 2-optimal tours within these
instances with length

√
n/2 times the length of a shortest tour.

This proves the tightness stated in Theorem 1. Before proving
the upper and the lower bound, we present in Section 2 some
notation and background on the 2-Opt heuristic.

2. Metric TSP and the 2-Opt Heuristic

Let G = (V (G), E(G)) be a complete undirected graph with
|V (G)| = n. The set E(G) contains all

(n
2

)
possible edges between
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Fig. 1. A TSP tour (left) and the tour obtained after replacing the edges (a, b) and (x, y) with the edges (a, x) and (b, y) (right). The orientation of the tour segment
between the vertices b and x has been reversed in the new tour.

the n vertices. The distances between the vertices are defined by
a function c : E(G) → R≥0. A tour in G is a cycle that contains
all the vertices of G. The length of a tour T in G is defined as
c(T ) :=

∑
e∈E(T ) c(e). A shortest tour is a tour of minimum length

among the tours in G. Given a graph G = (V (G), E(G)) and a
function c : E(G) → R≥0, the Traveling Salesman Problem is to
find a shortest tour in G. To simplify the notation, we will denote
the length of an edge {x, y} ∈ E(G) simply by c(x, y) instead of
the more cumbersome notation c({x, y}). In the metric TSP, the
distance function c satisfies the triangle inequality, i.e. we have
for any set of three vertices x, y, z ∈ V (G):

c(x, y) + c(y, z) ≥ c(x, z). (1)

An algorithm for the traveling salesman problem has approxi-
mation ratio α(n) ≥ 1 if for every TSP instance with n vertices, it
finds a tour that is at most α(n) times as long as a shortest tour.

The 2-Opt heuristic repeatedly replaces two edges from the
tour by two other edges such that the resulting tour is shorter.
Given a tour T and two edges {a, b} and {x, y} in T , there are
two possibilities to replace these two edges by two other edges.
Either we can choose the pair {a, x} and {b, y} or we can choose
the pair {a, y} and {b, x}. Exactly one of these two pairs will
result in a tour again. Without knowing the other edges of T , we
cannot decide which of the two possibilities we have to choose.
Therefore, we will assume in the following that the tour T is an
oriented cycle, i.e. the edges of T have an orientation such that
each vertex has exactly one incoming and one outgoing edge.
Using this convention, there is only one possibility to exchange
a pair of edges such that the new edge set is a tour again: two
directed edges (a, b) and (x, y) have to be replaced by the edges
(a, x) and (b, y). Note that to obtain an oriented cycle again, one
has to reverse the direction of the segment between b and x, see
Fig. 1.

If (a, b) and (x, y) are two edges in a tour T and we have

c(a, x) + c(b, y) < c(a, b) + c(x, y)

then we say that replacing the edges (a, b) and (x, y) in T by the
edges (a, x) and (b, y) is an improving 2-change. Thus, the 2-Opt
heuristic can be formulated as follows:

2-Opt heuristic (G = (V (G), E(G)), c : E(G) → R≥0)

1 start with an arbitrary tour T
2 while ∃ improving 2-change in T
3 perform an improving 2-change
4 output T

3. The upper bound on the approximation ratio

Chandra, Karloff, and Tovey [2] proved in 1999 that the 2-Opt
heuristic has an approximation ratio of 4

√
n for metric TSP. In

2013, Levin and Yovel [7] observed that their proof yields the
upper bound 2

√
2n. Here we present a new proof which improves

this bound by a factor of 4:

Theorem 2. The approximation ratio of the 2-Opt heuristic on
metric TSP is at most

√ n
2 .

Proof. Let G = (V (G), E(G)) with c : E(G) → R≥0 and |V (G)| = n
be a metric TSP instance and let T be an optimal tour. We may
assume that T has length 1. We fix an orientation of the tour T
and choose two vertices p, q ∈ V (G) arbitrarily. For each vertex
v ∈ V (G), let ip(v) be the length taken mod 1 of the unique
shortest directed p-v path starting in p and using only edges of T .
By our assumption, we have ip : V (G) → [0, 1) and we define iq
similarly. For the following, it helps to think of [0, 1) as the circle
with circumference 1 and of ip as an embedding of the optimal
tour into this circle such that the arc distance of two consecutive
vertices on the circle is the length of the edge between them.

Define the following metric d on the interval [0, 1), interpreted
as a circle: d(x, y) is the length of the shorter of the two arcs
between x and y on the circle, i.e., d(x, y) := min{|x−y|, 1−|x−y|}.
For any points x, y, z ∈ [0, 1) we have d(x, y) + d(y, z) ≥ d(x, z)
since combining the two shortest arcs between x, y and y, z and
deleting the overlap results in an arc between x, z.

Let T ′ be a 2-optimal tour. As usual, we assume that it is
directed. Now consider for each edge (u, v) of T ′ the set

Sp,q(u, v) = {(x, y) ∈ [0, 1) × [0, 1) : d(x, ip(u)) + d(y, iq(v)) < c(u, v)},

as shown in Fig. 2. We claim that all these sets are pairwise
disjoint for distinct edges (u1, v1), (u2, v2) ∈ E(T ′). Suppose that
Sp,q(u1, v1) and Sp,q(u2, v2) intersect in (x, y). Then, by the triangle
inequality for c and d, we have

c(u1, u2) + c(v1, v2) ≤ d(ip(u1), ip(u2)) + d(iq(v1), iq(v2))
≤ d(ip(u1), x) + d(x, ip(u2))

+ d(iq(v1), y) + d(y, iq(v2))
< c(u1, v1) + c(u2, v2).

This contradicts the 2-optimality of T ′. Hence, all these sets
Sp,q(u, v) are disjoint.

Next, we want to show that the area of each set is independent
of the choice of p and q. Let p′ and q′ be a different choice. Note
that for all vertices u, we have ip′ (u) = ip′ (p) + ip(u) mod 1.
In particular, we find d(x, ip(u)) = d(x + ip′ (p) mod 1, ip′ (u))
because both points are shifted by ip′ (p) on the circle [0, 1). By
the definition of Sp,q(u, v), this means that the map

t : [0, 1) × [0, 1) → [0, 1) × [0, 1)
(x, y) ↦→ (x + ip′ (p) mod 1, y)

bijectively sends Sp,q(u, v) to Sp′,q(u, v). In other words, we obtain
Sp′,q(u, v) from Sp,q(u, v) by cutting the unit square vertically at
1 − ip′ (p) = ip(p′) into two rectangles and reassembling them, as
described by the following two translations:

t1 : [0, ip(p′)) × [0, 1) → [ip′ (p), 1) × [0, 1)
(x, y) ↦→ (x + ip′ (p), y)
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Fig. 2. The sets Sp,q(a, b) (red) and Sp,q(u, v) (green) assigned to the edges (a, b)
and (u, v) of a 2-optimal tour. The sets are taken modulo the unit square and
thus may consist of up to four parts. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

t2 : [ip(p′), 1) × [0, 1) → [0, ip(p′)) × [0, 1)
(x, y) ↦→ (x − ip(p′), y)

Since they have disjoint domains and disjoint images, their union
t = t1 ∪ t2 is a bijection [0, 1) × [0, 1) → [0, 1) × [0, 1); sends
Sp,q(u, v) bijectively to Sp′,q(u, v); and preserves the area of this
set because it consists of translations. Analogously, we can cut the
square horizontally at iq(q′) to obtain Sp′,q′ (u, v) from Sp′,q(u, v),
again preserving its area. We conclude that the area of Sp,q(u, v)
is independent of the choice of p and q.

Now we want to show that the area of Sp,q(u, v) is 2c(u, v)2
for any edge (u, v) ∈ E(T ′). By the previous paragraph, we can
choose p = u and q = v. Then Su,v(u, v) = {(x, y) ∈ [0, 1) ×

[0, 1) : d(x, 0) + d(y, 0) < c(u, v)}. This set consists of four
congruent isosceles right-angled triangles whose legs have length
c(u, v). Note that they do not overlap because the metric property
ensures c(u, v) ≤

1
2 . Hence we have: area(Sp,q(u, v)) = 4·

c(u,v)2
2 =

2c(u, v)2.
Since the sets Sp,q(u, v) for (u, v) ∈ E(T ′) are pairwise disjoint,

their combined area cannot exceed that of the unit square:

2
∑

e∈E(T ′)

c(e)2 =

∑
(u,v)∈E(T ′)

area(Sp,q(u, v)) ≤ area([0, 1)×[0, 1)) = 1.

Then the inequality of arithmetic and quadratic means implies∑
e∈E(T ′) c(e)

n
≤

√∑
e∈E(T ′) c(e)2

n
≤

1
√
2n

.

Hence, the length of the 2-optimal tour T ′ satisfies
∑

e∈E(T ′) c(e) ≤√ n
2 . □

4. The lower bound on the approximation ratio

To prove a lower bound α on the approximation ratio of the
2-Opt heuristic for the metric TSP, one has to show that for
infinitely many n, there exists a metric TSP instance with n cities

that contains a 2-optimal tour which is α times longer than a
shortest tour.

In 1999, Chandra, Karloff, and Tovey [2] provided such a con-
struction for all n of the form 4 · k2 for positive integers k, which
shows a lower bound of 1

4

√
n. Several years earlier, Plesník [9]

had given another construction without explicitly stating a lower
bound. It turns out that his construction yields a lower bound of
1

√
8

√
n and works for all n of the form 8 · k2 −8 · k+3 for positive

integers k.
The following result improves Plesník’s lower bound by a

factor of 2, and yields the tight result stated in Theorem 1.

Theorem 3. The approximation ratio of the 2-Opt heuristic on the
metric TSP is at least

√ n
2 .

Proof. Let G be a complete graph on n := 2 · k2 nodes with
vertex set V (G) := {vi,j : 1 ≤ i, j ≤ k} ∪ {wi,j : 1 ≤ i, j ≤ k}.
For each i with 1 ≤ i ≤ k, we call Vi := {vi,j : 1 ≤ j ≤ k} and
Wi := {wi,j : 1 ≤ j ≤ k} a section of V (G) and the v-vertices and
w-vertices the two halves of V (G).

We define a distance function c : E(G) → R≥0 as follows:

c(vi,j, wi′,j′ ) = 1 for all 1 ≤ i, i′, j, j′ ≤ k

c(vi,j, vi′,j′ ) =

{
0 i = i′

2 i ̸= i′
for all 1 ≤ j, j′ ≤ k

c(wi,j, wi′,j′ ) =

{
0 i = i′

2 i ̸= i′
for all 1 ≤ j, j′ ≤ k

It is not hard to see that the function c satisfies the triangle
inequality: Let u, v, w be any three vertices in V (G). We want to
show that c(u, w) ≤ c(u, v) + c(v, w). As c takes only the values
0, 1, 2, this is obvious if c(u, v) ≥ 1 and c(v, w) ≥ 1. Otherwise,
without loss of generality, we may assume c(u, v) = 0. i.e., u
and v are in the same section of V (G). But then the definition
of c implies c(u, w) = c(v, w) and the triangle inequality is
satisfied. Therefore, the graph G with cost function c is a metric
TSP instance.

In the following, we will construct two special tours in G,
which are depicted in Fig. 3. Let T be the tour consisting of the
edges

E(T ) = {(vi,j, vi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪

{(wi,j, wi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪

{(vi,k, wi,1) : 1 ≤ i ≤ k} ∪

{(wi,k, vi+1,1) : 1 ≤ i < k} ∪

{(wk,k, v1,1)}.

The edges in the first two sets have length 0; the 2k edges in the
other three sets have length 1. Therefore, we have c(T ) = 2k.
This tour is optimal because any tour has to visit all 2k sections
of V (G) and the distance of two vertices from different sections
is at least 1.

Next we consider the tour T ′ with

E(T ′) = {(vi,j, wj,i) : 1 ≤ i, j ≤ k} ∪

{(wj,i, vi,j+1) : 1 ≤ i ≤ k, 1 ≤ j < k} ∪

{(wk,i, vi+1,1) : 1 ≤ i < k} ∪

{(wk,k, v1,1)}.

Each edge of T ′ has length 1. Thus we have c(T ′) = 2k2. We claim
that the tour T ′ is 2-optimal. Assume by contradiction that T ′ is
not 2-optimal. Consider a pair of edges (a, b), (x, y) that allows
an improving 2-change to (a, x), (b, y). Hence c(a, x) + c(b, y) <

c(a, b)+c(x, y) = 2 and one of c(a, x) or c(b, y) must be zero. This
means a and x or b and y must be in the same section. But since a
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Fig. 3. The optimal tour T (left) and the 2-optimal tour T ′ (right) for k = 4. Note that the w-vertices on the right are mirrored at the diagonal compared to the
w-vertices on the left. Thus, on the left, vertices within the sections Vi and Wi are in a row. On the right, the vertices in the sections Vi are in a row while the
vertices in a section Wi are within a column. The colored bars contain the vertices belonging to the same section. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

and b are in opposite halves of V (G) (just like x and y), this means
that a and x are in one half of V (G) and b and y in the other. Hence
c(a, x), c(b, y) ∈ {0, 2}. For an improving 2-change, we must have
c(a, x) = c(b, y) = 0. This implies that a and x lie in the same sec-
tion of V (G) and b and y lie in the same section of V (G). Thus there
must exist indices i and j with 1 ≤ i, j ≤ k such that a, x ∈ Vi and
b, y ∈ Wj or such that a, x ∈ Wi and b, y ∈ Vj. This implies that
there must exist two different edges from Vi to Wj or from Wi to
Vj. However, this is a contradiction as by definition of T ′, for any
pair i, j with 1 ≤ i, j ≤ k, there exists exactly one edge directed
from Vi to Wj (namely the edge (vi,j, wj,i)) and exactly one edge
directed from Wj to Vi. This proves the 2-optimality of T ′.

Combining the above findings we get

c(T ′)
c(T )

=
2k2

2k
= k =

√
2k2

2
=

√
n
2
. □
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