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Abstract
A challenging problem in probabilistic program-
ming is to develop inference algorithms that work
for arbitrary programs in a universal probabilis-
tic programming language (PPL). We present the
nonparametric involutive Markov chain Monte
Carlo (NP-iMCMC) algorithm as a method for
constructing MCMC inference algorithms for non-
parametric models expressible in universal PPLs.
Building on the unifying involutive MCMC frame-
work, and by providing a general procedure for
driving state movement between dimensions, we
show that NP-iMCMC can generalise numerous
existing iMCMC algorithms to work on nonpara-
metric models. We prove the correctness of the
NP-iMCMC sampler. Our empirical study shows
that the existing strengths of several iMCMC al-
gorithms carry over to their nonparametric ex-
tensions. Applying our method to the recently
proposed Nonparametric HMC, an instance of
(Multiple Step) NP-iMCMC, we have constructed
several nonparametric extensions (all of which
new) that exhibit significant performance im-
provements.

1. Introduction
Universal probabilistic programming (Goodman et al.,
2008) is the idea of writing probabilistic models in a Turing-
complete programming language. A universal probabilistic
programming language (PPL) can express all computable
probabilistic models (Vákár et al., 2019), using only a hand-
ful of basic programming constructs such as branching and
recursion. In particular, nonparametric models, where the
number of random variables is not determined a priori and
possibly unbounded, can be described naturally in a uni-
versal PPL. In programming language terms, this means
the number of sample statements is unknown prior to
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execution. On the one hand, such programs can describe
probabilistic models with an unknown number of compo-
nents, such as Bayesian nonparametric models (Richardson
& Green, 1997), variable selection in regression (Ratner,
2010), and models for signal processing (Murray et al.,
2018). On the other hand, there are models defined on
infinite-dimensional spaces, such as probabilistic context
free grammars (Manning & Schütze, 1999), birth-death
models of evolution (Kudlicka et al., 2019) and statistical
phylogenetics (Ronquist et al., 2021).

However, since universal PPLs are expressively complete, it
is challenging to design and implement inference engines
that work for arbitrary programs written in them. The pa-
rameter space of a nonparametric model is a disjoint union
of spaces of varying dimensions. To approximate the poste-
rior distribution via a Markov chain Monte Carlo (MCMC)
algorithm (say), the transition kernel will have to switch
between (possibly an unbounded number of) states of dif-
ferent dimensions, and to do so reasonably efficiently. This
explains why providing theoretical guarantees for MCMC al-
gorithms that work for universal PPLs (Wingate et al., 2011;
Wood et al., 2014; Tolpin et al., 2015; Hur et al., 2015; Mak
et al., 2021b) is very challenging. For instance, the original
version of Lightweight MH (Wingate et al., 2011) was incor-
rect (Kiselyov, 2016). In fact, most applications requiring
Bayesian inference rely on custom MCMC kernels, which
are error-prone and time-consuming to design and build.

Contributions We introduce Nonparametric Involutive
MCMC (NP-iMCMC) for designing MCMC samplers for
universal PPLs. It is an extension of the involutive MCMC
(iMCMC) framework (Neklyudov et al., 2020; Cusumano-
Towner et al., 2020) to densities arising from nonparametric
models (for background on both, see Sec. 2). We explain
how NP-iMCMC moves between dimensions and how a
large class of existing iMCMC samplers can be extended
for universal PPLs (Sec. 3). We also discuss necessary as-
sumptions and prove its correctness. Furthermore, there are
general transformations and combinations of NP-iMCMC,
to derive more powerful samplers systematically (Sec. 4),
for example by making them nonreversible to reduce mixing
time. Finally, our experimental results show that our method
yields significant performance improvements over existing
general MCMC approaches (Sec. 5).
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All missing proofs are presented in the appendix.

Notation We write Nn(x,Σ) for the x-mean Σ-
covariance n-dimensional Gaussian with pdf φn(x,Σ). For
the standard Gaussian Nn(0, I), we abbreviate them to Nn

and φn. In case n = 1, we simply write N and φ.

Given measurable spaces (X,ΣX) and (Y,ΣY ), we write
K : X ⇝ Y to mean a kernel of type K : X × ΣY →
[0,∞). We say that K is a probability kernel if for all
x ∈ X , K(x, ·) : ΣY → [0,∞) is a probability measure.
We write pdfK(x, y) as the density of y ∈ Y in the measure
K(x, ·) assuming a derivative w.r.t. some reference measure
exists.

Unless otherwise specified, the real space R is endowed with
the Borel measurable sets B and the standard Gaussian N
measure; the boolean space 2 := {T,F} is endowed with
the discrete measurable sets Σ2 := P(2) and the measure
µ2 which assigns either boolean the probability 0.5. We
write x1..n to mean the n-long prefix of the sequence x. For
any real-valued function f : X → R, we define its support
as Supp(f) := {x ∈ X | f(x) > 0}.

2. Background
2.1. Involutive MCMC

Given a target density ρ on a measure space (X,ΣX , µX),
the iMCMC algorithm generates a Markov chain of samples
{x(i)}i∈N by proposing the next sample x using the current
sample x0, in three steps:
1. v0 ∼ K(x0, ·): sample a value v0 on an auxiliary

measure space (Y,ΣY , µY ) from an auxiliary kernel
K : X ⇝ Y applied to the current sample x0.

2. (x,v) ← Φ(x0,v0): compute the new state (x,v) by
applying an involutiona Φ : X×Y → X×Y to (x0,v0).

3. Accept the proposed sample x as the next step with
probability given by the acceptance ratio

min

{
1;

ρ(x) · pdfK(x,v)

ρ(x0) · pdfK(x0,v0)
· |det(∇Φ(x0,v0))|

}
;

otherwise reject the proposal x and repeat x0.
ai.e. Φ = Φ−1.

Figure 1. iMCMC Algorithm

Our sampler is built on the recently introduced involutive
Markov chain Monte Carlo method (Neklyudov et al., 2020;
Cusumano-Towner et al., 2020), a unifying framework for
MCMC algorithms. Completely specified by a target den-
sity ρ, an (auxiliary) kernel K and an involution Φ, the
iMCMC algorithm (Fig. 1) is conceptually simple. Yet it is
remarkably expressive, describing many existing MCMC

Listing 1. Infinite Gaussian mixture model� �
K = floor(abs(sample(normal(0, 1))))
for i in range(K):
xs[i] = sample(normal(0, 1))

for d in data:
observe d from mixture([normal(x, 1)

for x in xs])
return K� �

samplers, including Metropolis-Hastings (MH) (Metropolis
et al., 1953; Hastings, 1970) with the “swap” involution
Φ(x,v) := (v,x) and the proposal distribution as its auxil-
iary kernel K; as well as Gibbs (Geman & Geman, 1984),
Hamiltonian Monte Carlo (HMC) (Neal, 2011) and Re-
versible Jump MCMC (RJMCMC) (Green, 1995). Thanks
to its schematic nature and generality, we find iMCMC an
ideal basis for constructing our nonparametric sampler, NP-
iMCMC, for (arbitrary) probabilistic programs. We stress
that NP-iMCMC is applicable to any target density function
that is tree representable.

2.2. Tree representable functions

As is standard in probabilistic programming, our sampler
finds the posterior of a program M by taking as the target
density a map w, which, given an execution trace, runs M
on the sampled values specified by the trace, and returns the
weight of such a run. Hence the support of w is the set of
traces on which M terminates.

This density w must satisfy the prefix property (Mak et al.,
2021b): for every trace, there is at most one prefix with
strictly positive density. Such functions are called tree rep-
resentable as they can be presented as a computation tree.
We shall see how our sampler exploits this property to jump
across dimensions in Sec. 3.

Formally the trace space T is the disjoint union
⋃

n∈N Rn,
endowed with σ-algebra ΣT := {

⋃
n∈N Xn | Xn ∈ Bn}

and the standard Gaussian (of varying dimensions) as mea-
sure µT(

⋃
n∈N Xn) :=

∑
n∈NNn(Xn). We present traces

as lists, e.g. [−0.2, 3.1, 2.8] and []. Thus the prefix property
is expressible as: for all traces t ∈ T, there is at most one
k ≤ |t| s.t. the prefix t1..k is in Supp(w). Note that the
prefix property is satisfied by any densities w : T→ [0,∞)
induced by a probabilistic program (Prop. A.6), so this is
a mild restriction

Example 1. Consider the classic nonparametric infinite
Gaussian mixture model (GMM), which infers the number
of Gaussian components from a data set. It is describable as
a program (Listing 1), where there is a mixture of K Gaus-
sian distributions such that the i -th Gaussian has mean
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xs[i] and unit variance. As K is not pre-determined, the
possible number of components is unbounded, rendering
the model nonparametric. Given a trace [3.4,−1.2, 1.0, 0.5],
the program describes a mixture of three Gaussians centred
at −1.2, 1.0 and 0.5; and it computes the likelihood of gen-
erating the set D of data from such a mixture. The program
has density w : T → [0,∞) (w.r.t. the trace measure µT)
with w(t) defined as:


∏
d∈D

⌊|t1|⌋∑
i=1

1

⌊|t1|⌋
φ⌊|t1|⌋(d | t1+i, 1) if |t| − 1 = ⌊|t1|⌋

0 otherwise.

We can check that the density w is tree representable.

3. Nonparametric involutive MCMC
3.1. Example: infinite GMM mixture

Consider how a sample for the infinite GMM (Ex. 1)
can be generated using a nonparametric variant of
Metropolis-Hastings (MH), an instance of iMCMC. Sup-
pose the current sample is x0 := [3.4,−1.2, 1.0, 0.5];
and [4.3,−3.4,−0.1, 1.4]—a sample from the stock Gaus-
sian N4—is the value of the initial auxiliary vari-
able v0. Then, by application of the “swap” invo-
lution to (x0,v0), the proposed state (x,v) becomes
([4.3,−3.4,−0.1, 1.4], [3.4,−1.2, 1.0, 0.5]). A problem
arises if we simply propose x as the next sample, as it
describes a mixture of four Gaussians (notice K has value
4) but only three means are provided, viz., −3.4,−0.1, 1.4.
Hence, the program does not terminate on the trace specified
by x, i.e., x is not in the support of w, the model’s density.

The key idea of NP-iMCMC is to extend the initial
state (x0,v0) to (x0 ++ [e],v0 ++ [p]) where ++ denotes
trace concatenation, and e, p are random draws from
the stock Gaussian N . Say −0.7 and −0.3 are the
values drawn; the initial state then becomes (x0,v0) =
([3.4,−1.2, 1.0, 0.5,−0.7], [4.3,−3.4,−0.1, 1.4,−0.3]),
and the proposed state (x,v) becomes
([4.3,−3.4,−0.1, 1.4,−0.3], [3.4,−1.2, 1.0, 0.5,−0.7]).
Now the program does terminate on a trace specified by
the proposed sample x = [4.3,−3.4,−0.1, 1.4,−0.3];
equivalently x ∈ Supp(w).

Notice that if this is not the case, such a process—which
extends the initial state by incrementing the dimension—
can be repeated until termination happens. For an almost
surely (a.s.) terminating program, this process a.s. yields a
proposed sample.

Finally, we calculate the acceptance ratio for x ∈ Supp(w)

from the initial sample x0
1..4 ∈ Supp(w) as

min

{
1;

w(x) · φ5(x) · φ5(v)

w(x0
1..4) · φ5(x0) · φ5(v0)

}
.

3.2. State space, target density and assumptions

Fix an parameter (measure) space (X,ΣX, µX), which is
(intuitively) the product of the respective measure space
of the distribution of X, with X ranging over the random
variables of the model in question. Assume an auxil-
iary (probability) space (Y,ΣY, µY). For simplicity, we
assume in this paper1 that both X and Y are R; further
µX has a derivative φX w.r.t. the Lebesgue measure, and
µY also has a derivative φY w.r.t. the Lebesgue measure.
Note that it follows from our assumption that Xn × Yn

is a smooth manifold for each n.2 Now a state is a
pair of parameter and auxiliary variables of equal dimen-
sion. Formally the state space S :=

⋃
n∈N(X

n × Yn)
is endowed with the σ-algebra ΣS := σ{Xn × Vn |
Xn ∈ ΣXn , Vn ∈ ΣYn , n ∈ N} and measure µS(S) :=∑

n∈N

∫
Yn µXn({x ∈ Xn | (x,v) ∈ S}) µYn(dv).

Besides the target density function w, our algorithm NP-
iMCMC requires two additional inputs: auxiliary kernels
(as an additional source of randomness) and involutions (to
traverse the state space). Next we present what we assume
about the three inputs and discuss some relevant properties.

Target density function We only target densities w : T→
[0,∞) that are tree representable, where T :=

⋃
n∈N Rn.

Moreover, we assume two common features of real-world
probabilistic programs:

(V1) w is integrable, i.e. Z :=
∫

T w dµT < ∞ (other-
wise, the inference problem is undefined)

(V2) w is almost surely terminating (AST), i.e. µT({t ∈
T | w(t) > 0}) = 1 (otherwise, the loop (Step 3) of
the NP-iMCMC algorithm may not terminate a.s.).3

Auxiliary kernel We assume, for each dimension n ∈ N,
an auxiliary (probability) kernel K(n) : Xn ⇝ Yn with
density function pdfK(n) : Xn × Yn → [0,∞) (assuming
a derivative w.r.t. µXn×Yn exists).

Involution We assume, for each dimension n ∈ N, a
differentiable endofunction Φ(n) on Xn × Yn which is in-

1In App. B.1, we consider a more general case where X is set
to be R × 2.

2Notation: For any probability space (X,ΣX, µX) such that µX

has derivative φX w.r.t. the Lebesgue measure. Xn is the Cartesian
product of n copies of X; ΣXn is the σ-algebra generated by subsets
of the form

∏n
i=1 Vi where Vi ∈ ΣX; and µXn is the product of n

copies of µX which has derivative φXn w.r.t. the Lebesgue measure.
Note that (Xn,ΣXn , µXn) is a probability space.

3If a program does not terminate on a trace t, the density w(t)
is defined to be zero.
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volutive, i.e. Φ(n) = Φ(n)−1
, and satisfies the projection

commutation property:

(V3) For all (x,v) ∈ S where |x| = m, if x1..n ∈
Supp(w) for some n, then for all k = n, . . . ,m,
takek(Φ

(m)(x,v)) = Φ(k)(takek(x,v))

where takeℓ is the projection that takes a state (x,v) and
returns the state (x1..ℓ,v1..ℓ) with the first ℓ coordinates of
each component. (Otherwise, the sample-component x of
the proposal state tested in Step 3 may not be an extension
of the sample-component of the preceding proposal state.)

3.3. Algorithm

Given a probabilistic program M with density function w
on the trace space T, a set {K(n) : Xn ⇝ Yn} of auxil-
iary kernels and a set {Φ(n) : Xn × Yn → Xn × Yn} of
involutions satisfying V1 to 3, we present the NP-iMCMC
algorithm in Fig. 2.

The NP-iMCMC generates a Markov chain by proposing
the next sample x using the current sample x0 as follows:
1. v0 ∼ K(k0)(x0, ·): sample a value v0 on the auxiliary

space Yk0 from the auxiliary kernel K(k0) : Xk0 ⇝ Yk0

applied to the current sample x0 where k0 = |x0|.
2. (x,v) ← Φ(n)(x0,v0): compute the proposal state

(x,v) by applying the involution Φ(n) on Xn×Yn to the
initial state (x0,v0) where n = |x0|.

3. Test if for some k, x1..k ∈ Supp(w). (Equivalently:
Test if program M terminates on the trace specified by
the sample-component x of the proposal state, or one of
its prefixes.) If so, proceed to the next step; otherwise

• (x0,v0)← (x0++[e],v0++[p]): extend the initial
state to (x0 ++ [e],v0 ++ [p]) where e and p are
samples drawn from µX and µY,

• Go to Step 2.
4. Accept x1..k as the next sample with probability

min

{
1;

w(x1..k) · pdfK(k)(x1..k,v1..k)

w(x0
1..k0) · pdfK(k0)(x0

1..k0 ,v0
1..k0)

· φXn×Yn(x,v)

φXn×Yn(x0,v0)
· |det(∇Φ(n)(x0,v0))|

}
where n = |x0|; otherwise reject the proposal and repeat
x0

1..k0 .

Figure 2. NP-iMCMC Algorithm

The heart of NP-iMCMC is Step 3, which can drive a state
across dimensions. Step 3 first checks if x1..k ∈ Supp(w)
for some k = 1, . . . , k0, (i.e. if the program M terminates
on the trace specified by some prefix of x). If so, the pro-
posal state is set to (x1..k,v1..k), and the state moves from
dimension k0 to k. Otherwise, Step 3 repeatedly extends the

initial state (x0,v0) to, say, (x0++y0,v0++u0), and com-
putes the new proposal state (x++y,v++u) by Step 2, until
the program M terminates on the trace specified by x++ y.
Then, the proposal state becomes (x++ y,v ++ u), and the
state moves from dimension k0 to dimension k0 + |y|.
Remark 3.1. (i) The projection commutation property,

V 3, ensures that the new proposal state computed
using (x0 ++ y0,v0 ++u0) from Step 3 is of the form
(x++ y,v ++ u) where (x,v) = Φ(|x0|)(x0,v0).

(ii) V2, a.s. termination of the program M , ensures that
the method of computing a proposal state in Step 3
almost surely finds a proposal sample x such that M
terminates on a trace specified by x.

(iii) The prefix property of the target density w ensures
that any proper extension of current sample x0 (of
length k0) has zero density, i.e. w(x0++y) = 0 for all
y ̸= []. Hence only the weight of the current sample
x0

1..k0 ∈ Supp(w) is accounted for in Step 4 even
when x0 is extended.

(iv) If the program M is parametric, thus inducing a target
density w on a fixed dimensional space, then the NP-
iMCMC sampler coincides with the iMCMC sampler.

Using NP-iMCMC (Fig. 2), we can formally present
the Nonparametric Metropolis-Hastings (NP-MH) sampler
which was introduced in Sec. 3.1. See App. E.1 for details.

3.4. Generalisations

In the interest of clarity, we have presented a version of
NP-iMCMC in deliberately purified form. Here we discuss
three generalisations of the NP-iMCMC sampler.

Hybrid state space Many PPLs provide continuous and
discrete samplers. The positions of discrete and continu-
ous random variables in an execution trace may vary, be-
cause of branching. We get around this problem by defining
the parameter space X to be the product space of R and
2 := {F,T}. Each value ti in a trace t is paired with a
randomly drawn “partner” t of the other type to make a pair
(ti, t) (or (t, ti)). Hence, the same idea of “jumping” across
dimensions can be applied to the state space

⋃
n∈N Xn×Yn.

The resulting algorithm is called the Hybrid NP-iMCMC
sampler. (See App. B for more details.)

Computationally heavy involutions Step 3 in the NP-
iMCMC sampler may seem inefficient. While it termi-
nates almost surely (thanks to V 2), the expected num-
ber of iterations may be infinite. This is especially bad
if the involution is computationally expensive such as the
leapfrog integrator in HMC which requires gradient in-
formation of the target density function. This can be
worked around if for each n ∈ N, there is an inexpen-
sive slice function s(n) : Xn × Yn → X × Y where
s(n)(x,v) = (dropn−1 ◦ Φ(n))(x,v) if (x,v) is a n-
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dimensional state such that x1..k ∈ Supp(w) for some
k < n, and dropℓ is the projection that takes a state (x,v)
and returns the state (xℓ+1..|x|,vℓ+1..|x|) with the first ℓ
coordinates of each component dropped. Then the new pro-
posal state in Step 3 can be computed by applying the func-
tion s(n) to the recently extended initial state (x0,v0), i.e.
(x,v)← (x++[e′],v++[p′]) where (e′, p′) = s(n)(x0,v0)
instead. (See App. D.2 for more details.)

Multiple step NP-iMCMC Suppose the involution is a
composition of bijective endofunctions, i.e. Φ(n) := f

(n)
L ◦

· · ·◦f (n)
2 ◦f (n)

1 and each endofunction {f (n)
ℓ }n satisfies the

projection commutation property and has a slice function
s
(n)
ℓ . A new state can then be computed by applying the

endofunctions to the initial state one-by-one (instead of in
one go as in Step 2 and 3): For each ℓ = 1, . . . , L,

1. Compute the intermediate state (xℓ,vℓ) by applying
f
(n)
ℓ to (xℓ−1,vℓ−1) where n = |xℓ−1|.

2. Test whether xℓ
1..k is in Supp(w) for some k. If so,

proceed to the next ℓ; otherwise
• extend the initial state (x0,v0) with samples drawn

from µX and µY,
• for i = 1, . . . , ℓ, extend the intermediate states
(xi,vi) with the result of s(n)i (xi−1,vi−1) where
n = |xi−1|,

• go to 2.

The resulting algorithm is called the Multiple Step NP-
iMCMC sampler. (See App. D.3 for more details.) This
approach was adopted in the recently proposed Nonpara-
metric HMC (Mak et al., 2021b). (See App. E.3 for more
details.)

3.5. Correctness

The NP-iMCMC algorithm is correct in the sense that the
invariant distribution of the Markov chain generated by
iterating the algorithm in Fig. 2 coincides with the target
distribution ν : A 7→ 1

Z

∫
A

w dµT with the normalising
constant Z. We present an outline proof here. See App. B.4
for a full proof of the Hybrid NP-iMCMC algorithm, a
generalisation of NP-iMCMC.

Note that we cannot reduce NP-iMCMC to iMCMC, i.e. the
NP-iMCMC sampler cannot be formulated as an instance
of the iMCMC sampler with an involution on the whole
state space S. This is because the dimension of involution
depends on the values of the random samples drawn in
Step 3. Instead, we define a helper algorithm (App. B.4.2),
which induces a Markov chain on states and does not change
the dimension of the involution.

This algorithm first extends the initial state to find the small-
est N such that the program M terminates with a trace

specified by some prefix of the sample-component of the
resulting state (x,v) after applying the involution Φ(N).
Then, it performs the involution Φ(N) as per the standard
iMCMC sampler. Hence all stochastic primitives are exe-
cuted outside of the involution, and the involution has a fixed
dimension. We identify the state distribution (App. B.4.2),
and show that the Markov chain generated by the auxiliary
algorithm has the state distribution as its invariant distri-
bution (Lem. B.14). We then deduce that its marginalised
chain is identical to that generated by Hybrid NP-iMCMC;
and Hybrid NP-iMCMC has the target distribution ν as
its invariant distribution (Lem. B.17). Since Hybrid NP-
iMCMC is a generalisation of NP-iMCMC (Fig. 2), we
have the following corollary.

Corollary 3.2 (Invariant). If all inputs satisfy V1 to 3 then ν
is the invariant distribution of the Markov chain generated
by iterating the algorithm described in Fig. 2.

4. Transforming NP-iMCMC samplers
The strength of the iMCMC framework lies in its flexibility,
which makes it a useful tool capable of expressing important
ideas in existing MCMC algorithms as “tricks”, namely

• state-dependent mixture (Trick 1 and 2 in (Neklyudov
et al., 2020)),

• smart involutions (Trick 3 and 4), and
• smart compositions (Trick 5 and 6).

In each of these tricks, the auxiliary kernel and involution
take special forms to equip the resulting sampler with desir-
able properties such as higher acceptance ratio and better
mixing times. This enables a “make to order” approach in
the design of novel MCMC samplers.

A natural question is whether there are similar tricks for the
NP-iMCMC framework. In this section, we examine the
tricks discussed in (Neklyudov et al., 2020), giving require-
ments for and showing via examples how one can design
novel NP-iMCMC samplers with bespoke properties by suit-
able applications of these “tricks” to simple NP-iMCMC
samplers. Similar applications can be made to the generali-
sations of NP-iMCMC such as Hybrid NP-iMCMC (App. C)
and Multiple NP-iMCMC (App. D.3.4). Throughout this
section, we consider samplers for a program M expressed
in a universal PPL which has target density function w that
is integrable (V1) and almost surely terminating (V2).

4.1. State-dependent mixture

Suppose we want a sampler that chooses a suitable NP-
iMCMC sampler depending on the current sample. This
might be beneficial for models that are modular, and where
there is already a good sampler for each module. We can
form a state-dependent mixture of a family {ιm}m∈M of
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NP-iMCMC samplers4 which runs ιm with a weight de-
pending on the current sample. See App. C.1 for details of
the algorithm.

Remark 4.1. This corresponds to Tricks 1 and 2 discussed
in (Neklyudov et al., 2020) which generalises the Mixture
Proposal MCMC and Sample-Adaptive MCMC samplers.

4.2. Auxiliary direction

Suppose we want to use sophisticated bijective but non-
involutive endofunctions f (n) on Xn × Yn to better ex-
plore the parameter space and return proposals with a
high acceptance ratio. Assuming both families {f (n)}n
and {f (n)−1}n satisfy the projection commutation prop-
erty (V3), we can construct an NP-iMCMC sampler with
auxiliary direction, which

• samples a direction d ∈ D := {+,−} with equal
probability; and

• generates the next sample by running Step 1 to 4 of
the NP-iMCMC sampler using {f (n)}n to suggest the
proposal sample if d is sampled to be +; otherwise
{f (n)−1}n is used.

See App. C.2 for details of the algorithm.

Notice that since the distribution of the direction variable d
is the discrete uniform distribution, we do not need to alter
the acceptance ratio in Step 4.

Example 2 (NP-HMC). We can formulate the recently pro-
posed Nonparametric Hamiltonian Monte Carlo sampler in
(Mak et al., 2021b) using the (Multiple Step) NP-iMCMC
framework with auxiliary direction, in which case the sophis-
ticated non-involutive endofunction is the leapfrog method
L. (See App. E.3 for details.)

Remark 4.2. This corresponds to Trick 3 described in (Nek-
lyudov et al., 2020). Trick 4 from (Neklyudov et al., 2020)
cannot be applied in our framework because the projection
commutation property (V3) is not closed under composition.

4.3. Persistence

Suppose we want a nonreversible sampler, so as to obtain
better mixing times. A typical way of achieving nonre-
versibility from an originally reversible MCMC sampler is
to reuse the value for a variable (that is previously resam-
pled in the original reversible sampler) in the next iteration
if the proposed sample is accepted. In this way, the value
of such a variable is allowed to persist, making the sampler
nonreversible.

A key observation made by Neklyudov et al. (2020) is
that the composition of reversible iMCMC samplers can

4We treat ιm as a piece of computer code that changes the
sample via the NP-iMCMC method described in Fig. 2.

yield a nonreversible sampler. Two systematic techniques
to achieve nonreversibility are persistent direction (Trick
5) and an auxiliary kernel (Trick 6). We present similar
approaches for NP-iMCMC samplers.

Suppose there is an NP-iMCMC sampler that uses the aux-
iliary direction as described in Sec. 4.2, i.e. there is a non-
involutive bijective endofunction f (n) on Xn × Yn for each
n ∈ N such that {f (n)}n and {f (n)−1}n satisfy the pro-
jection commutation property (V 3). In addition, assume
there are two distinct families of auxiliary kernels, namely
{K(n)

+}n and {K(n)
−}n. The corresponding NP-iMCMC

sampler with persistence

• proposes the next sample by running Step 1 to 3 of
the NP-iMCMC sampler with {K(n)

+}n and {f (n)}n
if d is sampled to be +; otherwise {K(n)

−}n and
{f (n)−1}n are used;

• accepts the proposed sample with probability indicated
in Step 4 of the NP-iMCMC sampler; otherwise repeats
the current sample and flips the direction d.

See App. C.3 for details of the algorithm. The family of
kernels and maps indeed persist across multiple iterations if
the proposals of these iterations are accepted. The intuitive
idea behind this is that if a family of kernels and maps
perform well (proposals are accepted) in the current part of
the sample space, we should keep it, and otherwise switch
to its inverse.

Remark 4.3. This corresponds to Tricks 5 and 6 described
in (Neklyudov et al., 2020), which can be found in non-
reversible MCMC sampler like the Generalised HMC al-
gorithm (Horowitz, 1991), the Look Ahead HMC sampler
(Sohl-Dickstein et al., 2014; Campos & Sanz-Serna, 2015)
and Lifted MH (Turitsyn et al., 2011).

Example 3 (NP-HMC with Persistence). The nonreversible
HMC sampler in (Horowitz, 1991) uses persistence, and, in
addition, (partially) reuses the momentum vector from the
previous iteration. As shown in (Neklyudov et al., 2020), it
can be viewed as a composition of iMCMC kernels. Using
the method indicated above, we can also add persistence to
NP-HMC. (See App. E.4 for details.)

Example 4 (NP-Lookahead-HMC). Look Ahead HMC
(Sohl-Dickstein et al., 2014; Campos & Sanz-Serna, 2015)
can be seen as an HMC sampler with persistence that gen-
erates a new state with a varying number of leapfrog steps,
depending on the value of the auxiliary variable. Similarly,
we can construct an NP-HMC sampler with Persistence that
varies the numbers of leapfrog steps. (See App. E.5 for
more details.)
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Figure 3. Histogram of the number of components for the infinite
GMM; correct posterior is 3.

5. Experiments
5.1. Nonparametric Metropolis-Hastings

We first implemented two simple instances of the NP-
iMCMC sampler, namely NP-MH (App. E.1) and NP-MH
with Persistence (App. E.2) in the Turing language (Ge et al.,
2018).5 We compared them with Turing’s built-in Sequen-
tial Monte Carlo (SMC) algorithm on an infinite Gaussian
mixture model (GMM) where the number of mixture com-
ponents is drawn from a normal distribution. Posterior infer-
ence is performed on 30 data points generated from a ground
truth with three components. The results of ten runs with
5000 iterations each (Fig. 3) suggest that the NP-iMCMC
samplers work pretty well.

5.2. Nonparametric Hamiltonian Monte Carlo

Secondly, we consider Nonparametric HMC (Mak et al.,
2021b), mentioned in Ex. 2 before. We have seen how the
techniques from Sec. 4 can yield nonreversible versions of
NP-iMCMC inference algorithms. Here, we look at nonpara-
metric versions of two extensions described in (Neklyudov
et al., 2020): persistence (Ex. 3) and lookahead (Ex. 4). Per-
sistence means that the previous momentum vector is reused
in the next iteration. It is parametrised by α ∈ [0, 1] where
α = 1 means no persistence (standard HMC) and α = 0
means full persistence (no randomness added to the momen-
tum vector). Lookahead HMC is parametrised by K ≥ 0,
which is the number of extra iterations (“look ahead”) to try

5 The code to reproduce the Turing experiments is available
in https://github.com/cmaarkol/nonparametric-
mh. Turing’s SMC implementation is nondeterministic (even with
a fixed random seed), so its results may vary somewhat, but every-
thing else is exactly reproducible.

Table 1. Geometric distribution example: total variation difference
from the ground truth, averaged over 10 runs, and standard devia-
tion. Each run: 103 samples, L leapfrog steps, step size ϵ = 0.1,
persistence parameter α ∈ {0.5}.

persistence TVD from ground truth
L = 5 — 0.0524± 0.0069
L = 5 α = 0.5 0.0464± 0.0074
L = 5 α = 0.1 0.0461± 0.0083
L = 2 — 0.0768± 0.0181
L = 2 α = 0.5 0.0570± 0.0115
L = 2 α = 0.1 0.0534± 0.0058

before rejecting a proposed sample (so K = 0 corresponds
to standard HMC). Detailed descriptions of these algorithms
and how they fit into the (Multiple Step) NP-iMCMC frame-
work can be found in App. E.4 and E.5.

We evaluate these extensions of NP-HMC on the bench-
marks from (Mak et al., 2021b): a model for the geometric
distribution, a model involving a random walk, and an un-
bounded Gaussian mixture model. Note that similarly to
(Mak et al., 2021b), we actually work with a discontinuous
version of NP-HMC, called NP-DHMC, which is a nonpara-
metric extension of discontinuous HMC (Nishimura et al.,
2020).6 The discontinuous version can handle the disconti-
nuities arising from the jumps between dimensions more effi-
ciently. We don’t discuss it in this paper due to lack of space.
However, the modifications necessary to this discontinuous
version are the same as for the standard NP-HMC. Mak et al.
(2021b) demonstrated the usefulness of NP-DHMC and how
it can obtain better results than other general-purpose in-
ference algorithms like Lightweight Metropolis-Hastings
and Random-walk Lightweight Metropolis-Hastings. Here,
we focus on the benefits of nonreversible versions of NP-
DHMC, which were derived using the (Multiple Step) NP-
iMCMC framework.

Geometric distribution The geometric distribution
benchmark from (Mak et al., 2021b) illustrates the use-
fulness of persistence: we ran NP-DHMC for a step count
L ∈ {2, 5} with and without persistence. As can be seen in
Table 1, persistence usually decreases the distance from the
ground truth. In fact, the configuration L = 2, α = 0.1 is
almost as good as L = 5 without persistence, despite taking
2.5 times less computing time.

Random walk The next benchmark from (Mak et al.,
2021b) models a random walk and observes the distance
travelled. Fig. 4 shows the effective sample size (ESS) in
terms of the number of samples drawn, comparing versions
of NP-DHMC with persistence (α = 0.5) and look-ahead

6The source code is available at https://github.com/
fzaiser/nonparametric-hmc.

https://github.com/cmaarkol/nonparametric-mh
https://github.com/cmaarkol/nonparametric-mh
https://github.com/fzaiser/nonparametric-hmc
https://github.com/fzaiser/nonparametric-hmc
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Figure 4. ESS for the random walk example in terms of number
of samples, computed from 10 runs. Each run: 103 samples with
L = 5 leapfrog steps of size ϵ = 0.1, persistence parameter
α ∈ {0.5, 0.1}, and look-ahead K ∈ {1, 2}.

(K ∈ {1, 2}). We can see again that persistence is clearly
advantageous. Look-ahead (K ∈ {1, 2}) seems to give an
additional boost on top. We ran all these versions with the
same computation time budget, which is why the the lines
for K = 1, 2 are cut off before the others.

Unbounded Gaussian mixture model Next, we consider
a Gaussian mixture model where the number of mixture
components is drawn from a Poisson prior. Inference is
performed on a training data set generated from a mixture
of 9 components (the ground truth). We then compute the
log pointwise predictive density (LPPD) on a test data set
drawn from the same distribution as the training data. The
LPPD is shown in Fig. 5 in terms of the number of sam-
ples. Note that again, all versions were run with the same
computation budget, which is why some of the lines are cut
off early. Despite this, we can see that the versions with
lookahead (K ∈ {1, 2}) converge more quickly than the
versions without lookahead. Persistent direction (α = 0.5)
also seems to have a (smaller) benefit.

Dirichlet process mixture model Finally, we consider a
Gaussian mixture whose weights are drawn from a Dirichlet
process. The rest of the setup is the same as for the Poisson
prior, and the results are shown in Fig. 6. The version with
persistence is worse at the start but obtains a better LPPD at
the end. Look-ahead (K ∈ {1, 2}) yields a small additional
boost in the LPPD. It should be noted that the variance over
the 10 runs is larger in this example than in the previous
benchmarks, so the conclusion of this benchmark is less
clear-cut.
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Figure 5. Gaussian mixture with Poisson prior: LPPD in terms
of number of samples, averaged over 10 runs. The shaded area
is one standard deviation. Each run: 103 samples with L = 25
leapfrog steps of size ϵ = 0.05, persistence parameter α = 0.5,
and look-ahead K ∈ {1, 2}.

6. Related work and Conclusion
Involutive MCMC and its instances The involutive
MCMC framework (Neklyudov et al., 2020; Cusumano-
Towner et al., 2019; Matheos et al., 2020) can in principle be
used for nonparametric models by setting X :=

⋃
n∈N Xn

and Y :=
⋃

n∈N Yn in Fig. 1 and defining an auxiliary ker-
nel on X ⇝ Y :=

⋃
n∈N Xn ⇝

⋃
n∈N Yn an involution

on X × Y :=
⋃

n∈N Xn × Yn. For instance, Reversible
Jump MCMC (Green, 1995) is an instance of iMCMC that
works for the infinite GMM model, with the split-merge pro-
posal (Richardson & Green, 1997) specifying when and how
states can “jump” across dimensions. However, designing
appropriate auxiliary kernels and involutions that enable the
extension of an iMCMC sampler to nonparametric models
remains challenging and model specific. By contrast, NP-
iMCMC only requires the specification of involutions on
the finite-dimensional space Xn×Yn; moreover, it provides
a general procedure (via Step 3) that drives state movement
between dimensions. For designers of nonparametric sam-
plers who do not care to custom build trans-dimensional
methods, we contend that NP-iMCMC is their method of
choice.

The performance of NP-iMCMC and iMCMC depends on
the complexity of the respective auxiliary kernels, involu-
tions and the model in question. Take iGMM for example.
RJMCMC with the split-merge proposal which computes
the weight, mean, and variance of the new component(s)
would be slower than NP-MH, an instance of NP-iMCMC
with a computationally light involution (a swap), but more
efficient than NP-HMC, an instance of (Multiple Step) NP-
iMCMC with the computationally heavy leapfrog integrator
as involution.
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Figure 6. Dirichlet process mixture: LPPD in terms of number of
samples, averaged over 10 runs. The shaded area is one standard
deviation. Each run: 150 samples with L = 20 leapfrog steps of
size ϵ = 0.05, persistence parameter α = 0.5, and look-ahead
K ∈ {1, 2}.

Trans-dimensional samplers A standard MCMC algo-
rithm for universal PPLs is the Lightweight Metropolis-
Hastings algorithm (LMH) (Yang et al., 2014; Tolpin et al.,
2015; Ritchie et al., 2016). Widely implemented in several
universal PPLs (Anglican, Venture, Gen, and Web PPL),
LMH performs single-site updates on the current sample
and re-executes the program from the resampling point.

Divide, Conquer, and Combine (DCC) (Zhou et al., 2020) is
an inference algorithm that is applicable to probabilistic pro-
grams that use branching and recursion. A hybrid algorithm,
DCC solves the problem of designing a proposal that can
efficiently transition between configurations by performing
local inferences on submodels, and returning an appropri-
ately weighted combination of the respective samples.

Mak et al. (2021b) have recently introduced Nonparametric
Hamiltonian Monte Carlo (NP-HMC), which generalises
HMC to nonparametric models. As we’ve seen, NP-HMC
is an instantiation of (Multiple Step) NP-iMCMC.

Conclusion We have introduced the nonparametric invo-
lutive MCMC algorithm as a general framework for design-
ing MCMC algorithms for models expressible in a universal
PPL, and provided a correctness proof. To demonstrate
the relative ease of make-to-order design of nonparametric
extensions of existing MCMC algorithms, we have con-
structed several new algorithms, and demonstrated empiri-
cally that the expected features and statistical properties are
preserved.
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Nonparametric Hamiltonian Monte Carlo (Appendix)

A. Statistical PCF
In this section, we present a functional probabilistic programming language (PPL) with (stochastic) branching and recursion,
and its operational semantics. We also define what it means for a program to be almost surely terminating and integrable.
We conclude the section by showing that a broad class of programs satisfies the assumptions for the NP-iMCMC inference
algorithm described in Sec. 3.

A.1. Syntax

Statistical PCF (SPCF) is a statistical probabilistic extension of the call-by-value PCF (Scott, 1993; Sieber, 1990) with the
reals and Booleans as the ground types. The terms and part of the typing system of SPCF are presented in Fig. 7.

SPCF has three probabilistic constructs:

(1) The continuous sampler normal draws from the standard Gaussian distribution N with mean 0 and variance 1.
(2) The discrete sampler coin is a fair coin (formally coin draws from the Bernoulli distribution Bern(0.5) with probability

0.5).
(3) The scoring construct score(M) enables conditioning on observed data by multiplying the weight of the current

execution with the real number denoted by M .
Remark A.1 (Continuous Sampler). The continuous sampler in most PPLs (Culpepper & Cobb, 2017; Wand et al., 2018;
Ehrhard et al., 2018; Vákár et al., 2019; Mak et al., 2021a) draw from the standard uniform distribution U with endpoints 0
and 1. However, we decided against U since its support is not the whole of R, which is a common target space for inference
algorithms (e.g. Hamiltonian Monte Carlo (HMC) inference algorithm). Instead our continuous sampler draws from the
standard normal distribution N which has the whole of R as its support. This design choice does not restrict nor extend our
language as we will see in Ex. 6.
Remark A.2 (Discrete Sampler). Like (Danos & Ehrhard, 2011; Ścibior et al., 2018), we choose the fair coin as our discrete
sampler for its simplicity. However, as shown in Ex. 7, this is not limiting. (Ehrhard et al., 2014), for example, samples from
the discrete uniform distribution.

Following the convention, the set of all terms is denoted as Λ with meta-variables M,N,L, the set of free variables of a
term M is denoted as FV(M) and the set of all closed terms is denoted as Λ0. In the interest of readability, we sometimes
use pseudocode in the style of ML (e.g. Ex. 5) to express SPCF terms.
Example 5. let rec f x = if coin then f(x+normal)else x in f 0 is a simple program which keeps tossing
a coin and sampling from the normal distribution until the first coin failure, upon which it returns the sum of samples from
the normal distribution.

A.2. Primitive Functions

Primitive functions play an important role in the expressiveness of SPCF. To be concise, we only consider partial, measurable
functions of types Rn × 2m ⇀ R or Rn × 2m ⇀ 2 for some n,m ∈ N. Examples of these primitives include addition +,
division /, comparison < and equality =. As we will see in Ex. 6 and 7, it is important that the cumulative distribution
functions (cdf) and probability density functions (pdf) of distributions are amongst the primitives in F . However, we do not
require all measurable functions to be primitives, unlike (Staton et al., 2016; Staton, 2017).
Example 6. (1) Let cdfnormal be the cdf of the standard normal distribution. Then, the standard uniform distribution

with endpoints 0 and 1 can be described as uniform = cdfnormal(normal) .
(2) Any distribution with an inverse cdf f in the set of primitives can be described as f(uniform) . For instance, the
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Types (typically denoted σ, τ ) and terms (typically M,N,L):

σ, τ ::= R | B | σ ⇒ τ

M,N,L ::= r | a | f(M1, . . . ,Mℓ) (Constants and functions)

| y | λy.M |M N (Higher-order)
| if(L,M,N) | YM (Branching and recursion)
| normal | coin | score(M) (Probabilistic)

Typing system:

a ∈ 2
Γ ⊢ a : B

{Γ ⊢Mi : R}ni=1 {Γ ⊢ Nj : B}mj=1 f : Rn × 2m ⇀ G

Γ ⊢ f(M1, . . . ,Mn, N1, . . . , Nm) :

{
R if G = R

B if G = 2

Γ ⊢ L : B Γ ⊢M : σ Γ ⊢ N : σ
Γ ⊢ if(L,M,N) : σ

Γ ⊢M : (σ ⇒ τ)⇒ (σ ⇒ τ)

Γ ⊢ YM : σ ⇒ τ

Γ ⊢ normal : R Γ ⊢ coin : B
Γ ⊢M : R

Γ ⊢ score(M) : R

Figure 7. Syntax of SPCF, where r, q, p ∈ R, a, b ∈ 2, x, y, z are variables, and f, g, h ranges over a set F of primitive functions.

inverse cdf of the exponential distribution (with rate 1) is f(p) := − ln(1− p) and hence -ln(1-uniform) describes
the distribution.

(3) The Poisson distribution can be specified using the uniform distribution ((Devroye, 1986)) as follows.� �
1 Poi(rate) = let p = exp(-rate) in
2 let rec f x p s = if s < uniform then f (x+1) (p*rate/x) (s+p) else x
3 in f 0 p p� �

Example 7. It might be beneficial for some inference algorithm if discrete distributions are specified using discrete random
variables. Hence, we show how different discrete distributions can be specified by our discrete sampler coin .

(1) The Bernoulli distribution with probability p ∈ [0, 1] ∩ D, where D := { n
2m | n,m ∈ N} is the set of all Dyadic

numbers, can be specified by� �
1 let rec bern(p) = if p = 0 then False else
2 if p = 1 then True else
3 if p < 0.5 then
4 if coin then bern(2*p) else False
5 else
6 if coin then True else bern(2*(p-0.5))� �

(2) The geometric distribution with rate p ∈ [0, 1] ∩ D can be specified by� �
1 geo(p) = count = 0; while bern(1-p): count += 1; return count� �

(3) The binomial distribution with n ∈ N trails and probability p ∈ [0, 1] ∩ D can be specified by
bin(n,p)= sum([1 for i in range(n)if bern(p)]) .

(4) Let pdfPio and pdfgeo be the pdfs of the Poisson and geometric distributions respectively. Then, the Poisson
distribution can be described by
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1 Poi(rate) = n = geo(0.5);
2 score(pdfPoi(rate,n)/pdfgeo(0.5,n));
3 return n� �

A.3. Church Encodings

We can represent pairs and lists in SPCF using Church encoding as follows:

Pair(σ, τ) := σ → τ → (σ → τ → R)→ R List(σ) := (σ → R→ R)→ (R→ R)

⟨M,N⟩ ≡ λz.z M N [M1, . . . ,Mℓ] ≡ λfx.f M1(f M2 . . . (f Mℓ 0))

Moreover standard primitives on pairs and lists, such as projection , len , append and sum , can be defined easily.

A.4. Operational Semantics

A.4.1. TRACE SPACE

Since normal samples from the standard normal distribution N and coin from the Bernoulli distribution Bern(0.5), the
sample space of SPCF is the union of the measurable spaces of R and 2. Formally it is the measurable space with set
Ω := R ∪ 2, σ-algebra ΣΩ := {V ∪W | V ∈ B,W ∈ Σ2} and measure µΩ(V ∪W ) := N (V ) + Bern(0.5)(W ). We
denote the product of n copies of the sample space as (Ωn,ΣΩn , µΩn) and call it the n-dimensional sample space.

A trace is a record of the values sampled in the course of an execution of a SPCF term. Hence, the trace space is
the union of sample spaces of varying dimension. Formally it is the measurable space with set T :=

⋃
n∈N Ωn, σ-

algebra ΣT := {
⋃

n∈N Un | Un ∈ ΣΩn} and measure µT(
⋃

n∈N Un) =
∑

n∈N µΩn(Un). We present traces as lists,
e.g. [−0.2,T,T, 3.1,F] and [].
Remark A.3. Another way of recording the sampled value in a run of a SPCF term is to have separate records for the
values of the continuous and discrete samples. In this case, the trace space will be the set

⋃
n∈N Rn ×

⋃
m∈N 2m. We

find separating the continuous and discrete samples unnecessarily complex for our purposes and hence follow the more
conventional definition of trace space.

A.4.2. SMALL-STEP REDUCTION

The small-step reduction of SPCF terms can be seen as a rewrite system of configurations, which are triples of the form
⟨M,w, t⟩ where M is a closed SPCF term, w > 0 is a weight, and t ∈ T a trace, as defined in Fig. 8.

In the rule for normal, a random value r ∈ R is generated and recorded in the trace, while the weight remains unchanged:
even though the program samples from a normal distribution, the weight does not factor in Gaussian densities as they are
already accounted for by µT. Similarly, in the rule for coin, a random boolean a ∈ 2 is sampled and recorded in the trace
with an unchanged weight. In the rule for score(r), the current weight is multiplied by r ∈ R: typically this reflects the
likelihood of the current execution given some observed data. Similar to (Borgström et al., 2016) we reduce terms which
cannot be reduced in a reasonable way (i.e. scoring with nonpositive constants or evaluating functions outside their domain)
to fail.

We write −→+ for the transitive closure and −→∗ for the reflexive and transitive closure of the small-step reduction.

A.4.3. VALUE AND WEIGHT FUNCTIONS

Following (Borgström et al., 2016), we view the set Λ of all SPCF terms as
⋃

n,m∈N(SKn,m × Rn × 2m) where SKn,m is
the set of SPCF terms with exactly n real-valued and m boolean-valued place-holders. The measurable space of terms is
equipped with the σ-algebra ΣΛ that is the Borel algebra of the countable disjoint union topology of the product topology of
the discrete topology on SKn,m, the standard topology on Rn and the discrete topology on 2m. Similarly the subspace Λ0

v of
closed values inherits the Borel algebra on Λ.

Let M be a closed SPCF term. Its value function valueM : T→ Λ0
v ∪ {⊥} returns, given a trace, the output value of the

program, if the program terminates in a value. Its weight function weightM : T→ [0,∞) returns the final weight of the
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Values (typically denoted V ), redexes (typically R) and evaluation contexts (typically E):

V ::= r | a | λy.M
R ::= f(c1, . . . , cℓ) | (λy.M)V | if(a,M,N) | Y(λy.M)

| normal | coin | score(r)
E ::= [] | EM | (λy.M)E | if(E,M,N) | f(c1, . . . , ci−1, E,Mi+1, . . . ,Mℓ) | YE
| score(E)

Redex contractions:

⟨f(c1, . . . , cℓ), w, t⟩ −→

{
⟨f(c1, . . . , cℓ), w, t⟩ if (c1, . . . , cℓ) ∈ Dom(f),

fail otherwise

⟨(λy.M)V,w, t⟩ −→ ⟨M [V/y], w, t⟩

⟨if(a,M,N), w, t⟩ −→

{
⟨M,w, t⟩ if a,
⟨N,w, t⟩ otherwise

⟨Y(λy.M), w, t⟩ −→ ⟨λz.M [Y(λy.M)/y] z, w, t⟩ (for fresh variable z)
⟨normal, w, t⟩ −→ ⟨r, w, t++ [r]⟩ (for some r ∈ R)
⟨coin, w, t⟩ −→ ⟨a,w, t++ [a]⟩ (for some a ∈ 2)

⟨score(r), w, t⟩ −→

{
⟨r, r · w, t⟩ if r > 0,

fail otherwise.

Evaluation contexts:
⟨R,w, t⟩ −→ ⟨∆, w′, t′⟩

⟨E[R], w, t⟩ −→ ⟨E[∆], w′, t′⟩
⟨R,w, t⟩ −→ fail

⟨E[R], w, t⟩ −→ fail

Figure 8. Small-step reduction of SPCF, where r, q, p ∈ R, a, b ∈ 2, c ∈ R ∪ 2, x, y, z are variables, and f, g, h ranges over the set F of
primitive functions.

corresponding execution. Formally:

valueM (t) :=

{
V if ⟨M, 1, []⟩ −→∗ ⟨V,w, t⟩
⊥ otherwise.

weightM (t) :=

{
w if ⟨M, 1, []⟩ −→∗ ⟨V,w, t⟩
0 otherwise.

It follows readily from (Borgström et al., 2016) that the functions valueM and weightM are measurable.

Finally, every closed SPCF term M has an associated value measure ⟨⟨M⟩⟩ on Λ0
v given by

⟨⟨M⟩⟩ : ΣΛ0
v
−→ [0,∞)

U 7−→
∫
valueM−1(U)

weightM dµT

Remark A.4. A trace is in the support of the weight function if and only if the value function returns a (closed) value when
given this trace. i.e. Supp(weightM ) = valueM

−1(Λ0) for all closed SPCF term M .
Remark A.5. The weight function defined here is the density of the target distribution from which an inference algorithm
typically samples. In this work, we call it the weight function when considering semantics following (Culpepper & Cobb,
2017; Vákár et al., 2019; Mak et al., 2021a), and call it density function when discussing inference algorithms following
(Zhou et al., 2019; 2020; Cusumano-Towner et al., 2020).

A.5. Tree Representable Functions

We consider a necessary condition for the weight function of closed SPCF terms which would help us in designing inference
algorithms for them. Note that not every function of type T→ [0,∞) makes sense as a weight function. Consider the program
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t1

[t1]
?
∈ Supp1(w)

w([t1]) t2

[t1, t2]
?
∈ Supp2(w)

w([t1, t2]) t3

[t1, t2, t3]
?
∈ Supp3(w)

w([t1, t2, t3]) ...

yes no

yes no

yes no

t1

t1
?
= F

1 t2

t3

t3
?
= F

1 t4

t5

t5
?
= F

1 ...

yes no

yes no

yes no

Figure 9. Program tree of a tree representable function w

let rec f x = if coin then f(x+normal)else x in f 0 in Ex. 5. This program executes successfully with
the trace [T, 0.5,F]. This immediately tells us that upon sampling T and 0.5, there must be a sample following them, and
this third sample must be a boolean. In other words, the program does not terminate with any proper prefix of [T, 0.5,F]
such as [T, 0.5], nor any traces of the form [T, 0.5, r] for r ∈ R.

Hence, we consider measurable functions w : T→ [0,∞) satisfying

• prefix property: whenever t ∈ Suppn(w)7 then for all k < n, we have t1...k ̸∈ Suppk(w); and

• type property: whenever t ∈ Suppn(w) then for all k < n and for all t ∈ Ω \ Type(tk+1)8 we have t1...k ++ [t] ̸∈
Suppk+1(w).

They are called tree representable (TR) functions (Mak et al., 2021b) because any such function w can be represented as a
(possibly) infinite but finitely branching tree, which we call program tree.

This is exemplified in Fig. 9 (left), where a hexagon node denotes an element of the input of type Ω; a triangular node gives
the condition for t ∈ Suppn(w) (with the left, but not the right, child satisfying the condition); and a leaf node gives the
result of the function on that branch. Any branch (i.e. path from root to leaf) in a program tree of w represents a set of
finite sequences [t1, . . . , tn] in Supp(w). In fact, every program tree of a TR function w specifies a countable partition of
Supp(w) via its branches. The prefix property guarantees that for each TR function w, there are program trees of the form in
Fig. 9 representing w.

The program tree of M is depicted in Fig. 9 (right), where a circular node denotes a real-valued input and a squared node
denotes a boolean-valued input.

The following proposition ties SPCF terms and TR functions together.
Proposition A.6. Every closed SPCF term has a tree representable weight function.

We will see in Sec. 3 how the TR functions, in particular the prefix property, is instrumental in the design of the inference
algorithm.

7Suppn(w) := Supp(w) ∩ Ωn for all n ∈ N.
8The type Type(t) of a sample t ∈ Ω is R if t ∈ R and is 2 if t ∈ 2.
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A.6. Almost Sure Termination and Integrability

Definition A.7. We say a SPCF term M terminates almost surely if M is closed and µT({t ∈ T | ∃V,w . ⟨M, 1, []⟩ −→∗

⟨V,w, t⟩}) = 1.

We denote the set of terminating traces as Tter := {t ∈ T | ∃V,w . ⟨M, 1, []⟩ −→∗ ⟨V,w, t⟩}.
Remark A.8. The set of traces on which a closed SPCF term M terminates, i.e. {t ∈ T | ∃V,w . ⟨M, 1, []⟩ −→∗ ⟨V,w, t⟩},
can be understood as the support of its weight function Supp(weightM ), or as discussed in Rem. A.4, the traces on which the
value function returns a value, i.e. valueM−1(Λ0

v). Hence, M almost surely terminates if and only if µT(Supp(weightM )) =
µT(valueM

−1(Λ0
v)) = 1.

Definition A.9. Following (Mak et al., 2021a), we say a trace t ∈ T is maximal w.r.t. a closed term M if there exists a term
N , weight w where ⟨M, 1, []⟩ −→∗ ⟨N,w, t⟩ and for all t′ ∈ T \ {[]} and all terms N ′, ⟨N,w, t⟩ ̸−→∗ ⟨N ′, w′, t++ t′⟩.

We denote the set of maximal traces as Tmax.

Proposition A.10 ((Mak et al., 2021a), Lemma 9). A closed term M is almost surely terminating if µT(Tmax \ Tter) = 0.

Proposition A.11. The value measure ⟨⟨M⟩⟩ of a closed almost surely terminating SPCF term M which does not contain
score(·) as a subterm is probabilistic.

Definition A.12. We say a SPCF term M is integrable if M is closed and its value measure is finite, i.e. ⟨⟨M⟩⟩(Λ0
v) <∞;

Proposition A.13. An integrable term has an integrable weight function.

Example 8. Now we look at a few examples in which we show that almost surely termination and integrability identify two
distinct sets of SPCF terms.

(1) The term M1 defined as let rec f x = if coin then f (x+1)else x in score(2**(f 0)) almost
surely terminates since it only diverges on the infinite trace [F,F, . . . ] which has zero probability. However, it
is not integrable as the value measure applied to all closed values ⟨⟨M1⟩⟩(Λ0

v) =
∫
{[T,...,T,F]} weightM1

dµT =∑∞
n=0

∫
{[T ]n++[F]} weightM1

dµ2n
9 =

∑∞
n=0(

1
2 )

n+1 · 2n =
∑∞

n=0
1
2 is infinite.

(2) Consider the term M2 defined as if coin then Y (lambda x:x)0 else 1 . Since it reduces to a diverging term,
namely Y (lambda x:x)0 , with non-zero probability, it does not terminate almost surely. However, it is integrable,
since ⟨⟨M2⟩⟩(Λ0

v) =
∫
{[F]} weightM2

dµT = 1
2 <∞.

(3) The term M3 defined as if(coin,M1,M2) is neither almost surely terminating nor integrable, since M1 is not integrable
and M2 is not almost surely terminating.

(4) All terms considered previously in Ex. 5 to 7 are both almost surely terminating and integrable.

9We write [x]n to be the list that contains n copies of x.
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B. Hybrid Nonparametric Involutive MCMC and its Correctness
In this section, we present the Hybrid Nonparametric Involutive Markov chain Monte Carlo (Hybrid NP-iMCMC), an
inference algorithm that simulates the probabilistic model specified by a given SPCF program that may contains both
discrete and continuous samplers.

To start, we detail the Hybrid NP-iMCMC inference algorithm: its state space, conditions on the inputs and steps to generate
the next sample; and study how the sampler moves between states of varying dimensions and returns new samples of a
nonparametric probabilistic program. We then give an implementation of Hybrid NP-iMCMC in SPCF and demonstrate
how the Hybrid NP-iMCMC method extends the MH sampler. Last but not least, we conclude with a discussion on the
correctness of Hybrid NP-iMCMC.

B.1. State Spaces

A state in the Hybrid NP-iMCMC algorithm is a pair (x,v) of equal dimension (but not necessarily equal length) parameter
and auxiliary variables. The parameter variable x is used to store traces and the auxiliary variable v is used to record
randomness. Both variables are vectors of entropies, i.e. Real-Boolean pairs. This section gives the formal definitions of the
entropy, parameter and auxiliary variables and the state, in preparation for the discussion of the Hybrid NP-iMCMC sampler.

B.1.1. ENTROPY SPACE

As shown in App. A, the reduction of a SPCF program is determined by the input trace t ∈ T :=
⋃

n∈N(R ∪ 2)n, a record
of drawn values in a particular run of the program. Hence in order to simulate a probabilistic model described by a SPCF
program, the Hybrid NP-iMCMC sampler should generate Markov chains on the trace space. However traversing through
the trace space is a delicate business because the positions and numbers of discrete and continuous values in a trace given by
a SPCF program may vary. (Consider if coin: normal else: coin .)

Instead, we pair each value ti in a trace t with a random value t of the other type to make a Real-Boolean pair (ti, t) (or
(t, ti)). For instance, the trace [T,−3.1] can be made into a Real-Boolean vector [(1.5,T), (−3.1,T)] with randomly drawn
values 1.5 and T. Now, the position of discrete and continuous random variables does not matter and the number of discrete
and continuous random variables are fixed in each vector.

We call a Real-Boolean pair an entropy and define the entropy space E to be the product space R×2 of the Borel measurable
space and the Boolean measurable space, equipped with the σ-algebra ΣE := σ

(
{R × B | R ∈ B, B ∈ Σ2}

)
, and the

product measure µE := N × µ2 where µ2 := Bern(0.5). Note the Radon-Nikodym derivative φE of µE can be defined as
φE(r, a) :=

1
2φ(r). A n-length entropy vector is then a vector of n entropies, formally an element in the product measurable

space (En,ΣEn). We write |x| to mean the length of the entropy vector x.

As mentioned earlier, the parameter variable of a state is an entropy vector that stores traces. Hence, it would be useless if
a unique trace cannot be restored from an entropy vector. We found that such a recovery is possible if the trace is in the
support of a tree representable function.

Say we would like to recover the trace t̂ that is used to form the entropy vector x by pairing each value in the trace with a
random value of the other type. First we realise that traces can be made by selecting either the Real or Boolean component
of each pair in a prefix of x. For example, traces like [], [T], [−0.2], [T, 2.9] and [−0.2,T,F] can be made from the entropy
vector [(−0.2,T), (2.9,T), (1.3,F)]. We call these traces instances of the entropy vector. Formally, a trace t ∈ T is an
instance of an entropy vector x ∈ En if |t| ≤ n and ti ∈ {r, a | (r, a) = xi} for all i = 1, . . . , |t|. We denote the set of all
instances of x as instance(x) ⊆ T. Then, the trace t̂ must be an instance of x. Moreover, if we can further assume that t̂ is
in the support of a tree representable function, then Prop. B.1 says we can uniquely identify t̂ amongst all instances of x.
Proposition B.1. There is at most one (unique) trace that is both an instance of an entropy vector and in the support of a
tree representable function.

Finally, we consider differentiability on the multi-dimensional entropy space. We say a function f : Ek1 → Ek2 is
differentiable almost everywhere if for all i ∈ 2k1 , j ∈ 2k2 , the partial function fi→j : Rk1 → Rk2 where

fi→j(r) = q ⇐⇒ f(zip(r, i)) = (zip(q, j))10

10We write zip(ℓ1, ℓ2) to be the n-length vector [(ℓ11, ℓ21), (ℓ12, ℓ22), . . . , (ℓ1n, ℓ2n)] ∈ (L1 × L2)
n for any vectors ℓ1 ∈ Ln1

1 and
ℓ2 ∈ Ln2

2 with n := min{n1, n2}.
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is differentiable almost everywhere on its domain Dom(fi→j) := {r ∈ Rk1 | ∃q ∈ Rk2 . f(zip(r, i)) = (zip(q, j))}. The
Jacobian of f on (zip(r, i)) is given by∇fi→j(r), if it exists.

B.1.2. PARAMETER SPACE

A parameter variable x of dimension n is an entropy vector of length ιX(n) where ιX : N → N is a strictly monotone
map. For instance, the parameter variable x := [(−0.2,T), (2.9,T), (1.3,F)] is of dimension two if ιX(n) := n + 1,
and dimension three if ιX(n) := n. We write dim(x) to mean the dimension of x and |x| to mean the length of x.
Hence, dim(x) ≤ |x| and ιX(dim(x)) = |x|. We extend the notion of dimension to traces and say a trace t ∈ T has
dimension n if |t| = ιX(n). Importantly, we assume that every trace in the support of w has a dimension (w.r.t. ιX),
i.e. Supp(w) =

⋃
n∈N SuppιX(n)(w).

Formally, the n-dimensional parameter space (X(n),ΣX(n)) is the product of ιX(n) copies of the entropy space (E,ΣE)
and the base measure µX(n) on X(n) is the product of ιX(n) copies of the entropy measure µE with the Radon-Nikodym
derivative φX(n) . For ease of reference, we write (X,ΣX, µX) for the one-dimensional parameter space.

B.1.3. AUXILIARY SPACE

Similarly, an auxiliary variable v of dimension n is an entropy vector of length ιY(n) where ιY : N → N is a strictly
monotone map. The n-dimensional auxiliary space (Y(n),ΣY(n)) is the product of ιY(n) copies of the entropy space (E,ΣE)
and the base measure µY(n) on Y(n) is the product of ιY(n) copies of the entropy measure µE with the Radon-Nikodym
derivative φY(n) . For ease of reference, we write (Y,ΣY, µY) for the one-dimensional auxiliary space.

B.1.4. STATE SPACE

A state is a pair of equal dimension but not necessarily equal length parameter and auxiliary variable. For instance with
ιX(n) := n + 1 and ιY(n) := n, the parameter variable x := [(−0.2,T), (2.9,T), (1.3,F)] and the auxiliary variable
v := [(1.5,T), (−2.1,F)] are both of dimension two and (x,v) is a two-dimensional state.

Formally, the state space S is the list measurable space of the product of parameter and auxiliary spaces of equal dimension,
i.e. S :=

⋃
n∈N(X

(n) × Y(n)), equipped with the σ-algebra ΣS := σ{Xn × Vn | Xn ∈ ΣX(n) , Vn ∈ ΣY(n) , n ∈ N} and
measure µS(S) :=

∑
n∈N

∫
Y(n) µX(n)({x ∈ X(n) | (x,v) ∈ S}) µY(n)(dv). We write S(n) for the set consisting of all

n-dimensional states.

We extend the notion of instances to states and say a trace t is an instance of a state (x,v) if it is an instance of the parameter
component x.

The distinction between dimension and length in parameter and auxiliary variables gives us the necessary pliancy to discuss
techniques for further extension of the Hybrid NP-iMCMC sampler in App. C. Before that, we present the inputs to the
Hybrid NP-iMCMC sampler.

B.2. Inputs of Hybrid NP-iMCMC Algorithm

Besides the target density function, the Hybrid NP-iMCMC sampler, like iMCMC, introduces randomness via auxiliary
kernels and moves around the state space via involutions in order to propose the next sample. We now examine each of
these inputs closely.

B.2.1. TARGET DENSITY FUNCTION

Similar to other inference algorithms for probabilistic programming, the Hybrid NP-iMCMC sampler takes the weight
function w : T → [0,∞) as the target density function. Recall w(t) gives the weight of a particular run of the given
probabilistic program indicated by the trace t. By Prop. A.6, the weight function w is tree representable. For the sampler to
work properly, we also require weight function w to satisfy the following assumptions.

(H1) w is integrable, i.e.
∫

T w dµT =: Z <∞ (otherwise, the inference problem is undefined).

(H2) w is almost surely terminating (AST), i.e. µT({t ∈ T | w(t) > 0}) = 1 (otherwise, the loop in the Hybrid
NP-iMCMC algorithm may not terminate almost surely).
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Virtually all useful probabilistic models can be specified by SPCF programs with densities satisfying H1 and 2. Exceptions
are models that are not normalizable or diverge with non-zero probability. (See App. A.6 for more details.)

B.2.2. AUXILIARY KERNELS

To introduce randomness, the Hybrid NP-iMCMC sampler takes, for each n ∈ N, a probability auxiliary kernel K(n) :
X(n) ⇝ Y(n) which gives a probability distribution K(n)(x, ·) on Y(n) for each n-dimensional parameter variable x. We
assume each auxiliary kernel K(n) has a probability density function (pdf) pdfK(n) : X(n) × Y(n) → [0,∞) w.r.t. µY(n) .

B.2.3. INVOLUTIONS

To move around the state space S, the Hybrid NP-iMCMC sampler takes, for each n ∈ N, an endofunction Φ(n) on
X(n)×Y(n) that is both involutive and differentiable almost everywhere. We require the set {Φ(n)}n of involutions to satisfy
the projection commutation property:

(H3) For all (x,v) ∈ S where dim(x) = m, if SuppιX(n)(w) ∩ instance(x) ̸= ∅ for some n, then for all k = n, . . . ,m,
takek(Φ

(m)(x,v)) = Φ(k)(takek(x,v))

where takek is the projection that given a state (x,v), takes the first ιX(k) coordinates of x and the first ιY(k) coordinates
of v and forms a k-dimensional state.

The projection commutation property ensures that the order of applying a projection and an involution to a state (which has
an instance in the support of the target density function) does not matter.

B.3. The Hybrid NP-iMCMC Algorithm

After identifying the state space and the necessary conditions on the inputs of the Hybrid NP-iMCMC sampler, we have
enough foundation to describe the algorithm.

Given a SPCF program M with weight function w on the trace space T, the Hybrid Nonparametric Involutive Markov
chain Monte Carlo (Hybrid NP-iMCMC) algorithm generates a Markov chain on T as follows. Given a current sample t0
of dimension k0 (i.e. |t0| = ιX(k0)),

1. (Initialisation Step) Form a k0-dimensional parameter variable x0 ∈ X(k0) by pairing each value t0
i in t0 with a

randomly drawn value t of the other type to make a pair (t0i, t) or (t, t0i) in the entropy space E. Note that t0 is the
unique instance of x0 that is in the support of w.

2. (Stochastic Step) Introduce randomness to the sampler by drawing a k0-dimensional value v0 ∈ Y(k0) from the
probability measure K(k0)(x0, ·).

3. (Deterministic Step) Move around the n-dimensional state space X(n) × Y(n) and compute the new state (x,v) by
applying the involution Φ(n) to the initial state (x0,v0) where n = dim (x0) = dim (v0).

4. (Extend Step) Test whether any instance t of x is in the support of w. If so, proceed to the next step with t as the
proposed sample; otherwise

(i) Extend the n-dimensional initial state to a state (x0 ++ y0,v0 ++ u0) of dimension n+ 1 where y0 and u0 are
values drawn randomly from µEιX(n+1)−ιX(n) and µEιY(n+1)−ιY(n) respectively,

(ii) Go to Step 3 with the initial state (x0,v0) replaced by (x0 ++ y0,v0 ++ u0).

5. (Accept/reject Step) Accept the proposed sample t as the next sample with probability

min

{
1;

w(t) · pdfK(k)(takek(x,v)) · φX(n)(x) · φY(n)(v)

w(t0) · pdfK(k0)(takek0
(x0,v0)) · φX(n)(x0) · φY(n)(v0)

· |det(∇Φ(n)(x0,v0))|
}

(1)

where n = dim (x0) = dim (v0), k is the dimension of t and k0 is the dimension of t0; otherwise reject the proposal
and repeat t0.
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Remark B.2. The integrable assumption on the target density (H1) ensures the inference problem is well-defined. The
almost surely terminating assumption on the target density (H2) guarantees that the Hybrid NP-iMCMC sampler almost
surely terminates. (See App. B.4.1 for a concrete proof.) The projection commutation property on the involutions (H3)
allows us to define the invariant distribution

B.3.1. MOVEMENT BETWEEN SAMPLES OF VARYING DIMENSIONS

All MCMC samplers that simulate a nonparametric model must decide how to move between samples of varying dimensions.
We now discuss how the Hybrid NP-iMCMC sampler as given in App. B.3 achieves this.

Form initial and new states in the same dimension Say the current sample t0 has a dimension of k0. Step 1 to 3 form a
k0-dimensional initial state (x0,v0) and a new k0-dimensional state (x,v).

Move between dimensions The novelty of Hybrid NP-iMCMC is its ability to generate a proposed sample t in the support
of the target density w which may not be of same dimension as t0. This is achieved by Step 4.

Propose a sample of a lower dimension Step 4 first checks whether any instance of the parameter-component x ∈ X(k0)

of the new state (computed in Step 3) is in the support of w. If so, we proceed to Step 5 with that instance, say t, as the
proposed sample.

Say the dimension of t is k. Then, we must have k ≤ k0 as the instance t ∈ T of a k0-dimensional parameter x ∈ X(k0)

must have a dimension that is lower than or equals to k0. Hence, the dimension of the proposed sample t is lower than or
equals to the current sample t0.

Propose a sample of a higher dimension Otherwise (i.e. none of the instances of x ∈ X(k0) is in the support of w)
Step 4 extends the initial state (x0,v0) ∈ X(k0)×Y(k0) to (x0 ++ y0,v0 ++u0) ∈ X(k0+1)×Y(k0+1); and computes a new
(k0 +1)-dimensional state (x++y,v++u) ∈ X(k0+1)×Y(k0+1) (via Step 3). This process of incrementing the dimensions
of both the initial and new states is repeated until an instance t of the new state, say of dimension n, is in the support of w.
At which point, the proposed sample is set to be t.

Say the dimension of t is k. Then, we must have k > k0 as t is not an instance of the k0-dimensional parameter x ∈ X(k0)

but one of x++ y ∈ X(n). Hence, the dimension of the proposed sample t is higher than the current sample t0.

Accept or reject the proposed sample Say the proposed sample t is of dimension k. With the probability given in
Equation (1), Step 5 accepts t as the next sample and Hybrid NP-iMCMC updates the current sample t0 of dimension k0 to
a sample t of dimension k. Otherwise, the current sample t0 is repeated and the dimension remains unchanged.

B.3.2. HYBRID NP-IMCMC IS A GENERALISATION OF NP-IMCMC

Given a target density w on
⋃

n∈N Rn, we can set the entropy space E to be R and the index maps ιX and ιY to be identities.
Then, the n-dimensional parameter space X(n) := Rn, the n-dimensional auxiliary space Y(n) := Rn and the state space
S :=

⋃
n∈N(X

(n) × Y(n)) =
⋃

n∈N(R
n × Rn) of the Hybrid NP-iMCMC sampler matches with those given in Sec. 3.2 for

the NP-iMCMC sampler. An instance t is then a prefix x1..k of a parameter variable x. Moreover, the assumptions H1
to 3 on the inputs of Hybrid NP-iMCMC are identical to those V1 to 3 on the inputs of NP-iMCMC. Hence the Hybrid
NP-iMCMC algorithm (App. B.3) is a generalisation of the NP-iMCMC sampler (Fig. 2).

B.3.3. PSEUDOCODE OF HYBRID NP-IMCMC ALGORITHM

We implement the Hybrid NP-iMCMC algorithm in the flexible and expressive SPCF language explored in App. A.

The NPiMCMC function in Listing 2 is an implementation of the Hybrid NP-iMCMC algorithm in SPCF. We assume that
the following SPCF types and terms exist. For each n ∈ N, the SPCF types T , X[n] and Y[n] implements T, X(n) and
Y(n) respectively; the SPCF term w of type T -> R implements the target density w; for each n ∈ N, the SPCF terms
auxkernel[n] of type X[n] -> Y[n] implements the auxiliary kernel K(n) : X(n) ⇝ Y(n); pdfauxkernel[n]

of type X[n]*Y[n] -> R implements the probability density function pdfK(n) : X(n) × Y(n) → R of the auxiliary
kernel; involution[n] of type X[n]*Y[n] -> X[n]*Y[n] implements the involution Φ(n) on X(n) × Y(n); and
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Listing 2. Pseudocode of the Hybrid NP-iMCMC algorithm� �
1 def NPiMCMC(t0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = auxkernel[k0](x0) # stochastic step
5 (x,v) = involution[k0](x0,v0) # deterministic step
6 n = k0 # extend step
7 while not intersect(instance(x),support(w)):
8 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
9 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))

10 n = n + 1
11 (x,v) = involution[n](x0,v0)
12 t = intersect(instance(x),support(w))[0] # accept/reject step
13 k = dim(t)
14 return t if uniform < min{1, w(t)/w(t0) * pdfauxkernel[k](proj((x,v),k))/
15 pdfauxkernel[k0](proj((x0,v0),k0)) *
16 pdfpar[n](x)/pdfpar[n](x0) *
17 pdfaux[n](v)/pdfaux[n](v0) *
18 absdetjacinv[n](x0,v0)}
19 else t0� �
absdetjacinv[n] of type X[n]*Y[n] -> R implements the absolute value of the Jacobian determinant of Φ(n).

We further assume that the following primitives are implemented: dim returns the dimension of a given trace; indexX and
indexY implements the maps ιY and ιX respectively; pdfpar[n] implements the derivative φX(n) of the n-dimensional

parameter space X(n); pdfaux[n] implements the derivative φY(n) of the n-dimensional auxiliary space Y(n); instance

returns a list of all instances of a given entropy vector; support returns a list of traces in the support of a given function;
and proj implements the projection function where proj((x,v),k)=(x[:indexX(k)],v[:indexY(k)]) .

B.4. Correctness

The Hyrbid Nonparametric Involutive Markov chain Monte Carlo (Hyrbid NP-iMCMC) algorithm is presented in App. B.3
for the simulation of probabilistic models specified by probabilistic programs.

We justify this by proving that the Markov chain generated by iterating the Hybrid NP-iMCMC algorithm preserves the
target distribution, specified by

ν : ΣT −→ [0,∞)

U 7−→ 1

Z

∫
U

w dµT where Z :=

∫
T
w dµT,

as long as the target density function w (given by the weight function of the probabilistic program) is integrable (H1) and
almost surely terminating (H2); with a probability kernel K(n) : X(n) ⇝ Y(n) and an endofunction Φ(n) on X(n)×Y(n) that
is involutive and differentiable almost everywhere for each n ∈ N such that {Φ(n)}n satisfies the projection commutation
property (H3).

Throughout this chapter, we assume the assumptions stated above, and prove the followings.

1. The Hybrid NP-iMCMC sampler almost surely returns a sample for the simulation (Lem. B.4).

2. The state movement in the Hybrid NP-iMCMC sampler preserves a distribution on the states (Lem. B.14).

3. The marginalisation of the state distribution which the state movement of Hybrid NP-iMCMC preserves coincides with
the target distribution (Lem. B.17).
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B.4.1. ALMOST SURE TERMINATION

In Rem. B.2, we asserted that the almost surely terminating assumption (H2) on the target density guarantees that the Hybrid
NP-iMCMC algorithm (App. B.3) almost surely terminates. We justify this claim here.

Step 3 in the Hybrid NP-iMCMC algorithm (App. B.3) repeats itself if the sample-component x of the new state (x,v)
(computed by applying the involution Φ(n) on the extended initial state (x0,v0)) does not have an instance in the support of
w. This loop halts almost surely if the measure of

{(x0,v0) ∈ S | (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅}

tends to zero as the dimension n tends to infinity. Since Φ(n) is invertible and |det∇Φ(n)(x0,v0)| > 0 for all n ∈ N and
(x0,v0) ∈ S,

µS({(x0,v0) ∈ S | (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅})
= Φ(n)

∗µS({(x,v) ∈ S | instance(x) ∩ Supp(w) = ∅})
< µS({(x,v) ∈ S | instance(x) ∩ Supp(w) = ∅})
= µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) = ∅}).

Thus it is enough to show that the measure of a n-dimensional parameter variable not having any instances in the support of
w tends to zero as the dimension n tends to infinity, i.e.

µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) = ∅})→ 0 as n→∞.

We start with the following proposition which shows that the chance of a n-dimensional parameter variable having some
instances in the support of w is the same as the chance of w terminating before n reduction steps.
Proposition B.3. µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) ̸= ∅}) = µT(

⋃n
i=1 SuppιX(i)(w)) for all n ∈ N and all tree

representable function w.

Proof. Let n ∈ N and w be a tree representable function.

For each i ≤ n, we unpack the set {x ∈ X(i) | instance(x) ∩ A ̸= ∅} of i-dimensional parameter variables that has an
instance in the set A ∈ ΣΩιX(i) of traces of length ιX(i) where Ω := R ∪ 2. Write π : {1, . . . , ιX(i)} → {R,2} for the
measurable space π(1) × π(2) × · · · × π(ιX(i)) with a probability measure µπ := µΩιX(i) on π; π−1 for the “inverse”
measurable space of π, i.e. π−1(j) := Ω \ π(j) for all j ≤ ιX(i); and S for the set of all such measurable spaces. Then,
for any i-dimensional parameter variable x, t ∈ instance(x) ∩A if and only if there is some π ∈ S where t ∈ A ∩ π and
x ∈ zip(A ∩ π, π−1). Hence, {x ∈ X(i) | instance(x) ∩ A ̸= ∅} can be written as

⋃
π∈S zip(A ∩ π, π−1). Moreover

µX(i)(zip(A ∩ π, π−1)) = µπ(A ∩ π) · µπ−1(π−1) = µπ(A ∩ π).

Consider the case where A := SuppιX(i)(w). Then, we have

{x ∈ X(i) | instance(x) ∩ SuppιX(i)(w) ̸= ∅} =
⋃
π∈S

zip(SuppιX(i)(w) ∩ π, π−1).

We first show that this is a disjoint union, i.e. for all π ∈ S, zip(SuppιX(i)(w) ∩ π, π−1) are disjoint. Let x ∈
zip(SuppιX(i)(w) ∩ π1, π1

−1) ∩ zip(SuppιX(i)(w) ∩ π2, π2
−1) where π1, π2 ∈ S. Then, at least one instance t1 of x

is in SuppιX(i)(w)∩ π1 and similarly at least one instance t2 of x is in SuppιX(i)(w)∩ π2. By Prop. B.1, t1 = t2 and hence
π1 = π2.

Since zip(SuppιX(i)(w) ∩ π, π−1) are disjoint for all π ∈ S, we have

µX(i)({x ∈ X(i) | instance(x) ∩ SuppιX(i)(w) ̸= ∅}) = µX(i)(
⋃
π∈S

zip(SuppιX(i)(w) ∩ π, π−1))

=
∑
π∈S

µX(i)(zip(SuppιX(i)(w) ∩ π, π−1)) =
∑
π∈S

µπ(SuppιX(i)(w) ∩ π)

=
∑
π∈S

µΩιX(i)(SuppιX(i)(w) ∩ π) = µΩιX(i)(SuppιX(i)(w)) = µT(SuppιX(i)(w)).
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Finally, {x ∈ X(n) | instance(x) ∩ Supp(w) ̸= ∅} is equal to
⋃n

i=1{x ∈ X(i) | instance(x) ∩ SuppιX(i)(w) ̸=
∅} × EιX(n)−ιX(i) and hence

µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) ̸= ∅})

= µX(n)(

n⋃
i=1

{x ∈ X(i) | instance(x) ∩ SuppιX(i)(w) ̸= ∅} × EιX(n)−ιX(i))

=

n∑
i=1

µX(i)({x ∈ X(i) | instance(x) ∩ SuppιX(i)(w) ̸= ∅})

=

n∑
i=1

µT(SuppιX(i)(w))

= µT(

n⋃
i=1

SuppιX(i)(w))

Prop. B.3 links the termination of the Hybrid NP-iMCMC sampler with that of the target density function w. Hence by
assuming that w terminates almost surely (H2), we can deduce that the Hybrid NP-iMCMC algorithm (App. B.3) almost
surely terminates.

Lemma B.4 (Almost Sure Termination). Assuming H 2, the Hybrid NP-iMCMC algorithm (App. B.3) almost surely
terminates.

Proof. Since Φ(n) is invertible for all n ∈ N, and w almost surely terminates (H2), i.e. limm→∞ µT(
⋃m

j=1 Suppj(w)) = 1,
we deduce from Prop. B.3 that

µS({(x0,v0) ∈ S | (x,v) = Φ(n)(x0,v0) and instance(x) ∩ Supp(w) = ∅})
< µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) = ∅})
= µX(n)(X(n) \ {x ∈ X(n) | instance(x) ∩ Supp(w) ̸= ∅})
= 1− µX(n)({x ∈ X(n) | instance(x) ∩ Supp(w) ̸= ∅})

= 1− µT(

n⋃
i=1

SuppιX(i)(w)) (Prop. B.3)

→ 1− 1 = 0 as n→∞. (H2)

So the probability of satisfying the condition of the loop in Step 3 of Hybrid NP-iMCMC sampler tends to zero as the
dimension n tends to infinity, making the Hybrid NP-iMCMC sampler (App. B.3) almost surely terminating.

B.4.2. INVARIANT STATE DISTRIBUTION

After ensuring the Hybrid NP-iMCMC sampler (App. B.3) almost always returns a sample (Lem. B.4), we identify the
distribution on the states and show that it is invariant against the movement between states of varying dimensions in Hybrid
NP-iMCMC.

State Distribution Recall a state is an equal dimension parameter-auxiliary pair. We define the state distribution π on the
state space S :=

⋃
n∈N(X

(n) × Y(n)) to be a distribution with density ζ (with respect to µS) given by

ζ(x,v) :=


1

Z
· w(t) · pdfK(k)(takek(x,v))

if (x,v) ∈ Svalid and t ∈ instance(x) ∩ Supp(w) has dimension k

0 otherwise

where Z :=
∫

T w dµT (which exists by H1) and Svalid is the subset of S consisting of all valid states.
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Remark B.5. If there is some trace in instance(x) ∩ Supp(w) for a parameter variable x, by Prop. B.1 this trace t is unique
and hence x represents a sample of the target distribution.

We say a n-dimensional state (x,v) is valid if

(i) instance(x) ∩ Supp(w) ̸= ∅, and

(ii) (y,u) = Φ(n)(x,v) implies instance(y) ∩ Supp(w) ̸= ∅, and

(iii) takek(x,v) ̸∈ Svalid for all k < n.

Intuitively, valid states are the states which, when transformed by the involution Φ(n), the instance of the parameter-
component of which does not “fall beyond” the support of w.

We write Svalid
n := Svalid ∩ (X(n) × Y(n)) to denote the the set of all n-dimensional valid states. The following proposition

shows that involutions preserve the validity of states.

Proposition B.6. Assuming H 3, the involution Φ(n) sends Svalid
n to Svalid

n for all n ∈ N. i.e. If (x,v) ∈ Svalid
n , then

(y,u) = Φ(n)(x,v) ∈ Svalid
n .

Proof. Let (x,v) ∈ Svalid
n and (y,u) = Φ(n)(x,v). We prove (y,u) ∈ Svalid

n by induction on n ∈ N.

• Let n = 1. As Φ(1) is involutive and (x,v) is a valid state,

(i) instance(y) ∩ Supp(w) ̸= ∅ and
(ii) (x,v) = Φ(1)(y,u) and instance(x) ∩ Supp(w) ̸= ∅.

(iii) holds trivially

and hence (y,u) ∈ Svalid
1 .

• Assume for all m < n, (z,w) ∈ Svalid
m implies (z′,w′) = Φ(m)(z,w) ∈ Svalid

m . Similar to the base case, (i) and (ii)
hold as Φ(n) is involutive and (x,v) is a valid state. Assume for contradiction that (iii) does not hold, i.e. there is
k < n where takek(y,u) ∈ Svalid

k . As instance(takek(y)) ∩ Supp(w) ̸= ∅, by H3 and the inductive hypothesis,

takek(x,v) = takek(Φ
(n)(y,u)) = Φ(k)(takek(y,u)) ∈ Svalid

k

which contradicts with the fact that (x,v) is a valid state.

We can partition the set Svalid of valid states. Let (x,v) be a m-dimensional valid state. The parameter variable x can be
written as zip(t1, t2)++y where t1 ∈ instance(x)∩Supp(w) is of dimension k0, t2 is a trace where zip(t1, t2) = takek0

(x),
and y := dropk0

(x) where dropk drops the first ιX(k) components of the input parameter. Similarly, the auxiliary variable
v can be written as v1 ++ v2 where v1 := takek0(v) and v2 := dropk0

(v) where dropk drops the first ιY(k) components
of the input parameter. Hence, we have

Svalid =

∞⋃
k0=1

∞⋃
m=1

{(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m |

t1 ∈ SuppιX(k0)(w), t2 ∈ T,y ∈ EιX(m)−ιX(k0),v1 ∈ Y(k0),v2 ∈ EιY(m)−ιY(k0)}

and the state distribution π on the measurable set S ∈ ΣS can be written as

π(S) =

∞∑
k0=1

∞∑
m=1

∫
EιY(m)−ιY(k0)

∫
Y(k0)

∫
EιX(m)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ S ∩ Svalid
m ] · 1

Z
w(t1) · pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)
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We can now show that the state distribution π is indeed a probability measure and the set of valid states almost surely covers
all states w.r.t. the state distribution.

Proposition B.7. Assuming H1,

1. π(S) = 1; and

2. π(S \
⋃n

k=1 Svalid
k )→ 0 as n→∞.

Proof. 1. Consider the set Svalid with the partition discussed above.

π(S)

= π(Svalid)

=

∞∑
k0=1

∞∑
m=1

∫
EιY(m)−ιY(k0)

∫
Y(k0)

∫
EιX(m)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m ] · 1

Z
w(t1) · pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

=

∞∑
k0=1

∫
Y(k0)

∫
T

∫
SuppιX(k0)(w)

1

Z
w(t1) · pdfK(k0)(zip(t1, t2),v1)·

( ∞⋃
ℓ1=1

∞⋃
ℓ2=1

∫
Eℓ1

∫
Eℓ2

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid] µEℓ2 (dy) µEℓ1 (dv2)
)

µT(dt1) µT(dt2) µY(k0)(dv1)

=

∞∑
k0=1

∫
T

∫
SuppιX(k0)(w)

1

Z
w(t1) ·

(∫
Y(k0)

pdfK(k0)(zip(t1, t2),v1) µY(k0)(dv1)
)

µT(dt1) µT(dt2)

=

∞∑
k0=1

∫
T

∫
SuppιX(k0)(w)

1

Z
w(t1) µT(dt1) µT(dt2)

=

∫
Supp(w)

1

Z
w(t1) µT(dt1) = 1

2. Since π is a probability distribution and π(S \ Svalid) = 0, the series
∑∞

n=1 π(S
valid
n ) which equals π(

⋃∞
n=1 Svalid

n ) =
π(Svalid) = 1 must converge. Hence π(S\

⋃n
k=1 Svalid

k ) = π(Svalid \
⋃n

k=1 Svalid
k ) =

∑∞
i=n+1 π(S

valid
i )→ 0 as n→∞.

Equivalent Program Though the Hybrid NP-iMCMC algorithm (App. B.3) traverses state, it takes and returns samples
on the trace space T. Hence instead of asking whether the state distribution π is invariant against the Hybrid NP-iMCMC
sampler directly, we consider a similar program which takes and returns states and prove the state distribution π is invariant
w.r.t. this program.

Consider the program eNPiMCMC in Listing 3. It is similar to NPiMCMC (Listing 2) syntactically except it takes and
returns states instead of traces, and has two additional lines (Lines 2 and 13). Hence, it is easy to deduce from Lem. B.4 that
eNPiMCMC almost surely terminates.

In eNPiMCMC , we group the commands differently and into two groups:

Line 2-12 An initial valid state (x0,v0) is constructed so that x0 and x* have the same instance in the support of w .

Line 14-22 A proposed state (x,v) is computed and accepted/rejected.
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Listing 3. Code for the equivalent program� �
1 def eNPiMCMC(x*,v*):
2 t0 = intersect(instance(x*),support(w))[0] # find a valid state
3 k0 = dim(t0)
4 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
5 v0 = auxkernel[k0](x0)
6 (x,v) = involution[k0](x0,v0)
7 n = k0
8 while not intersect(instance(x),support(w)):
9 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))

10 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
11 n = n + 1
12 (x,v) = involution[n](x0,v0)
13 (x,v) = involution[n](x0,v0) # accept/reject proposed state
14 t = intersect(instance(x),support(w))[0]
15 k = dim(t)
16 return (x,v) if uniform < min{1, w(t)/w(t0) *
17 pdfauxkernel[k](proj((x,v),k))/
18 pdfauxkernel[k0](proj((x0,v0),k0)) *
19 pdfpar[n](x)/pdfpar[n](x0) *
20 pdfaux[n](v)/pdfaux[n](v0) *
21 absdetjacinv[n](x0,v0)}
22 else (x0,v0)� �
Invariant Distribution Take a SPCF program M of type List(X*Y)-> List(X*Y) where the SPCF types X and
Y implements the parameter space X and auxiliary space Y respectively. We define the transition kernel of M to be the

kernel T M : S⇝ S where

T M (s, S) :=

∫
value

M(s)
−1(S′)

weight
M(s)

dµT = ⟨⟨ M(s) ⟩⟩(S′)

where s implements the state s and S′ is the set consisting of SPCF terms that implements states in S. Intuitively,
T M (s, S) gives the probability that the term M returns a state in S given the current state s.

Proposition B.8. Let M be a SPCF term of type List(X*Y)-> List(X*Y) . If M(s) does not contain any scoring
subterm and almost surely terminates for all SPCF terms s , then its transition kernel T M is probabilistic.

Proof. Since the term M(s) does not contain score(·) and terminates almost surely, by Prop. A.11 its value measure must
be probabilistic. Hence T M ( s ,S) = ⟨⟨ M(s) ⟩⟩(S′) = ⟨⟨ M(s) ⟩⟩(Λ0

v) = 1.

We say a distribution µ on states S is invariant w.r.t. a almost surely terminating SPCF program M of type
List(X*Y)-> List(X*Y) if µ is not altered after applying M , formally

∫
S T M (s, S) µ(ds) = µ(S).

We now prove that eNPiMCMC preserves the state distribution π stated in App. B.4.2 by considering the transition kernels
given by the two steps in eNPiMCMC given in App. B.4.2: find a valid state (Lines 2-12) and accept/reject the computed
proposed state (Lines 13-22).

Finding a Valid State Assuming the initial state (x*,v*) is valid, eNPiMCMC (Lines 2-12) aims to construct a valid
state (x0,v0) where x* and x0 share the same instance t0 that is in the support of the density w .

To do this, it first finds the instance t0 of x* which is in the support of w (Line 2). Say the dimension of t0 is
k0 (Line 3). It then forms a k0 -dimensional state (x0,v0) by sampling partners t for each value in the trace t0
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to form a k0 -dimensional parameter variable x0 (Line 4); and drawing a k0 -dimensional auxiliary variable from
auxkernel[k0](x0) (Line 5). Say v is the auxiliary value drawn. Then, the k0 -dimensional state can be written as
(zip(t0,t),v) .

Note that the k0 -dimensional state (zip(t0,t),v) might not be valid. In which case, it repeatedly appends
zip(t0,t) and v with entropies (normal, coin) until the resulting state is valid (Lines 6-12). Say y and
u are the entropy vectors drawn for the parameter and auxiliary variables respectively. Then the resulting state can be

written as (zip(t0,t)+y, v+u) .

The transition kernel of Lines 2-12 can be expressed

T1((x
∗,v∗), S)

:=

∞∑
n=1

∫
EιY(n)−ιY(k0)

∫
EιX(n)−ιX(k0)

∫
Y(k0)

∫
T
[(zip(t0, t) ++ y,v ++ u) ∈ S ∩ Svalid

n ] · pdfK(k0)(zip(t0, t),v)

µT(dt) µY(k0)(dv) µEιX(n)−ιX(k0)(dy) µEιY(n)−ιY(k0)(du)

if (x∗,v∗) ∈ Svalid and t0 ∈ instance(x∗) ∩ Supp(w) has some dimension k0 ∈ N; and 0 otherwise.

Remark B.9. Recall zip(ℓ1, ℓ2) := [(ℓ1
1, ℓ2

1), (ℓ1
2, ℓ2

2), . . . , (ℓ1
n, ℓ2

n)] ∈ (L1 × L2)
n for any vectors ℓ1 ∈ Ln1

1 and
ℓ2 ∈ Ln2

2 with n := min{n1, n2}. Here we extend the definition to lists ℓ1, ℓ2 ∈ (L1 ∪ L2)
n such that either (ℓ1i, ℓ2i) or

(ℓ2
i, ℓ1

i) is in L1 × L2 for all i = 1, . . . , n. Then, we write zip(ℓ1, ℓ2) for the list of pairs in L1 × L2.

Proposition B.10. Assuming H2, T1((x0,v0),Svalid) = 1 for all (x0,v0) ∈ Svalid.

Proof. Since Lines 2-12 in eNPiMCMC can be described by a closed SPCF term that does not contain score(·) and terminates
almost surely. By Prop. B.8, its transition kernel is probabilistic. Moreover, as this term always return a valid state, we have
T1((x0,v0),Svalid) = T1((x0,v0),S) = 1.

Proposition B.11. Assuming H1 and 2, the state distribution π is invariant against Lines 2-12 in eNPiMCMC .

Proof. We aim to show:
∫

S T1((x
∗,v∗), S) π(d(x∗,v∗)) = π(S) for any measurable set S ∈ ΣS. (Changes are highlighted

for readability.)

∫
S

T1((x
∗,v∗), S) π(d(x∗,v∗))

= { T1((x
∗,v∗), S) = 0 for all (x∗,v∗) ̸∈ Svalid }∫

Svalid
T1( (x

∗,v∗) , S) π(d(x∗,v∗))

= { Writing (x∗,v∗) as (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m where

t1 ∈ SuppιX(k0)(w), t2 ∈ T,y ∈ EιX(m)−ιX(k0),v1 ∈ Y(k0),v2 ∈ EιY(m)−ιY(k0),m, k0 ∈ N }
∞∑

k0=1

∞∑
m=1

∫
EιY(m)−ιY(k0)

∫
Y(k0)

∫
EιX(m)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)

T1((zip(t1, t2) ++ y,v1 ++ v2), S)

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m ] · 1

Z
w(t1) · pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

= { Definition of T1 on (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid where t1 ∈ SuppιX(k0)(w) }
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∞∑
k0=1

∞∑
m=1

∫
EιY(m)−ιY(k0)

∫
Y(k0)

∫
EιX(m)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)( ∞∑

n=1

∫
EιY(n)−ιY(k0)

∫
EιX(n)−ιX(k0)

∫
Y(k0)

∫
T

[(zip(t1, t
′) ++ y′,v′ ++ u′) ∈ S ∩ Svalid

n ] · pdfK(k0)(zip(t1, t
′),v′)

µT(dt′) µY(k0)(dv′) µEιX(n)−ιX(k0)(dy′) µEιY(n)−ιY(k0)(du′)

)
[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid

m ] · 1
Z
w(t1) · pdfK(k0)(zip(t1, t2),v1)

µT(dt1) µT(dt2) µEιX(m)−ιX(k0)(dy) µY(k0)(dv1) µEιY(m)−ιY(k0)(dv2)

= { Tonelli’s theorem as all measurable functions are non-negative }∑∞
k0=1

∑∞
n=1

∫
EιY(n)−ιY(k0)

∫
Y(k0)

∫
EιX(n)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)( ∞∑

m=1

∫
EιY(m)−ιY(k0)

∫
EιX(m)−ιX(k0)

∫
Y(k0)

∫
T

[(zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid
m ] · pdfK(k0)(zip(t1, t2),v1)

µT(dt2) µY(k0)(dv1) µEιX(m)−ιX(k0)(dy) µEιY(m)−ιY(k0)(dv2)
)

[(zip(t1, t
′) ++ y′,v′ ++ u′) ∈ S ∩ Svalid

n ] · 1
Z
w(t1) · pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { Definition of T1 on (zip(t1, t2) ++ y,v1 ++ v2) ∈ Svalid where t1 ∈ SuppιX(k0)(w) }
∞∑

k0=1

∞∑
n=1

∫
EιY(n)−ιY(k0)

∫
Y(k0)

∫
EιX(n)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)

T1((zip(t1, t2) ++ y,v1 ++ v2),S
valid)

[(zip(t1, t
′) ++ y′,v′ ++ u′) ∈ S ∩ Svalid

n ] · 1
Z
w(t1) · pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { By Prop. B.10, T1((zip(t1, t2) ++ y,v1 ++ v2),Svalid) = 1 }
∞∑

k0=1

∞∑
n=1

∫
EιY(n)−ιY(k0)

∫
Y(k0)

∫
EιX(n)−ιX(k0)

∫
T

∫
SuppιX(k0)(w)

[(zip(t1, t
′) ++ y′,v′ ++ u′) ∈ S ∩ Svalid

n ] · 1
Z
w(t1) · pdfK(k0)(zip(t1, t

′),v′)

µT(dt1) µT(dt′) µEιX(n)−ιX(k0)(dy′) µY(k0)(dv′) µEιY(n)−ιY(k0)(du′)

= { Writing (x∗,v∗) ∈ S ∩ Svalid
n as (zip(t1, t′) ++ y′,v′ ++ u′) where

t1 ∈ SuppιX(k0)(w), t′ ∈ T,y′ ∈ EιX(m)−ιX(k0),v′ ∈ Y(k0),u′ ∈ EιY(m)−ιY(k0), n, k0 ∈ N }
π(S)

Accept/Reject Proposed State After constructing a valid state (x0,v0) , say of dimension n , eNPiMCMC traverses
the state space via involution[n] to obtain a proposal state (x,v) (Line 13). By Prop. B.6, (x,v) must also be a
n -dimensional valid state. Say it has an instance t of dimension k in the support of w , then (Line 14-22) (x,v) is
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accepted with probability

α(x0,v0) := min
{
1,

w(t) · pdfK(k)(takek(x,v)) · φX(n)(x) · φY(n)(v)

w(t0) · pdfK(k0)(takek0
(x0,v0)) · φX(n)(x0) · φY(n)(v0)

· |det
(
∇Φ(n)(x0,v0)

)
|
}

= min
{
1,

ζ(x,v) · φX(n)(x) · φY(n)(v)

ζ(x0,v0) · φX(n)(x0) · φY(n)(v0)
· |det

(
∇Φ(n)(x0,v0)

)
|
}
.

The transition kernel for Line 13-22 can be expressed as

T2(s, S) := α(s) · [Φ(n)(s) ∈ S] + (1− α(s)) · [s ∈ S]

if s ∈ Svalid
n for some n ∈ N; and 0 otherwise.

To show that the state distribution π is invariant against T2, we consider a partition of the set of valid states. Let S(n)
ij be the

set of n-dimensional valid states where i is the list of boolean values in all s ∈ S
(n)
ij and Φ(n) maps s to a (valid) state with

boolean values given by the list j. Note that both lists i, j of booleans must be of length ñ := ιX(n) + ιY(n). Formally,

S
(n)
ij := {s ∈ Svalid

n | s = zip(r, i) and Φ(n)(s) = s′ = zip(q, j) for some r, q ∈ Rñ}.

Then, the set Svalid of valid states can written as
⋃
{S(n)

ij | i, j ∈ 2ñ and n ∈ N}.

Proposition B.12. Assuming H1 to 3, for n ∈ N, s ∈ Svalid
n and s′ = Φ(n)(s), we have

α(s′) · ζ ′(s′) · |det
(
∇Φ(n)(s)

)
| = α(s) · ζ ′(s)

where ζ ′(z,w) := ζ(z,w) · φX(m)(z) · φY(m)(w) for any (z,w) ∈ Sm.

Proof. Let s ∈ S
(n)
ij where there are r, q ∈ Rñ, i, j ∈ 2ñ such that s = zip(r, i) and s′ := Φ(n)(s) = zip(q, j). Hence,

taking the Jacobian determinant on both sides of the equation Φ
(n)
ji ◦ Φ

(n)
ij = id gives us

|det
(
∇Φ(n)(s′)

)
| = |det

(
∇Φ(n)

ji (q)
)
| = 1

|det
(
∇Φ(n)

ij (r)
)
|
=

1

|det (∇Φ(n)(s))|
. (2)

Moreover we can write the acceptance ratio in terms of ζ ′ as

α(s′′) = min{1, ζ
′(Φ(n)(s′′))

ζ ′(s′′)
· |det

(
∇Φ(n)(s′′)

)
|} for any s′′ ∈ Sm.

Hence given s′ = Φ(n)(s), we have

α(s′) · ζ ′(s′) · |det
(
∇Φ(n)(s)

)
|

=


ζ ′(s)

ζ ′(s′)
· |det

(
∇Φ(n)(s′)

)
| · ζ ′(s′) · |det (∇Φ(n)(s))| if

ζ ′(s)

ζ ′(s′)
· |det

(
∇Φ(n)(s′)

)
| < 1

ζ ′(s′) · |det
(
∇Φ(n)(s)

)
| otherwise

(s = Φ(n)(s′))

=


ζ ′(s) if

ζ ′(s′)

ζ ′(s)
· |det (∇Φ(n)(s))| > 1

ζ ′(s′)

ζ ′(s)
· |det (∇Φ(n)(s))| · ζ ′(s) otherwise

(By Equation (2))

= α(s) · ζ ′(s)

Proposition B.13. Assuming H1 to 3, the state distribution π is invariant against Line 13-22 in eNPiMCMC .
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Proof. We aim to show:
∫

S T2(s, S) π(ds) = π(S) for all S ∈ ΣS.

Let s be a n-dimensional valid state and S ∈ ΣS. Then we can write T2(s, S) as [s ∈ S] + [Φ(n)(s) ∈ S] · α(s)− [s ∈
S] · α(s). Hence, it is enough to show that the integral of the second and third terms over all valid states are the same, i.e.∫

Svalid
[Φ(n)(s) ∈ S] · α(s) π(ds) =

∫
Svalid

[s ∈ S] · α(s) π(ds)

First we consider the valid states in S
(n)
ij where n ∈ N, i, j ∈ 2ñ and ñ := ιX(n) + ιY(n). These are n-dimensional valid

states with boolean values given by i and are mapped by Φ(n) to valid states with boolean values given by j. Then we
have zip(·, j)−1

(S
(n)
ji ) = Φ

(n)
ij

(
zip(·, i)−1

(S
(n)
ij )

)
where zip(·, j) : Rñ → Eñ is a measurable function. Writing ζ ′(z,w)

for ζ(z,w) · φX(m)(z) · φY(m)(w) for any (z,w) ∈ Sm, we have∫
S

(n)
ji

[s ∈ S] · α(s) π(ds)

=

∫
S

(n)
ji

[s ∈ S] · α(s) · ζ ′(s) µEñ(ds) (Definition of π)

=

∫
zip(·,j)−1(S

(n)
ji )

[zip(r, j) ∈ S] · α(zip(r, j)) · ζ ′(zip(r, j)) µRñ(dr) (zip(·, j)∗µRñ = µEñ on S
(n)
ji )

=

∫
zip(·,i)−1(S

(n)
ij )

[zip(Φ
(n)
ij (q), j) ∈ S] · α(zip(Φ(n)

ij (q), j)) · ζ ′(zip(Φ(n)
ij (q), j)) · |det∇Φ(n)

ij (q)| µRñ(dq)

(Change of variable where r = Φ
(n)
ij (q))

=

∫
zip(·,i)−1(S

(n)
ij )

[Φ(n)(zip(q, i)) ∈ S] · α(zip(q, i)) · ζ ′(zip(q, i)) µRñ(dq)

(Prop. B.12 as Φ(n)(zip(q, i)) = zip(Φ
(n)
ij (q), j) for (zip(q, i)) ∈ S

(n)
ij )

=

∫
S

(n)
ij

[Φ(n)(s) ∈ S] · α(s) · ζ ′(s) µEñ(ds) (zip(·, i)∗µRñ = µEñ on S
(n)
ij )

=

∫
S

(n)
ij

[Φ(n)(s) ∈ S] · α(s) π(ds)

Recall the set Svalid of all valid states can be written as
⋃
{S(n)

ij | i, j ∈ 2ñ and n ∈ N}. Hence, we conclude our proof with∫
Svalid

[Φ(n)(s) ∈ S] · α(s) π(ds) =
∞∑

n=1

∑
i,j∈2ñ

∫
S

(n)
ij

[Φ(n)(s) ∈ S] · α(s) π(ds)

=

∞∑
n=1

∑
i,j∈2ñ

∫
S

(n)
ji

[s ∈ S] · α(s) π(ds) =
∫

Svalid
[s ∈ S] · α(s) π(ds).

Since the transition kernel of eNPiMCMC is the composition of T1 and T2 and both T1 and T2 are invariant against π
(Propositions B.11 and B.13), we deduce that eNPiMCMC preserves the state distribution π.

Lemma B.14 (State Invariant). π is the invariant distribution of the Markov chain generated by iterating eNPiMCMC .

B.4.3. MARGINALISED MARKOV CHAINS

As discussed above, the Markov chain {si}i∈N generated by iterating eNPiMCMC (which has invariant distribution π
(Lem. B.14)) has elements on the state space S and not the trace space T. The chain we are in fact interested in is the
marginalised chain {m(si)}i∈N where the measurable function m : Svalid → T takes a valid state s = (x,v) and returns the
instance of the parameter variable x that is in the support of the target density function w.
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In this section we show that this marginalised chain simulates the target distribution ν. Let T
NPiMCMC

: T⇝ T be a kernel

such that

T
NPiMCMC

(t, A) :=

{
T
eNPiMCMC

(s,m−1(A)) if t ∈ Supp(w) and s ∈ m−1({t})

0 otherwise.

Comparing the commands of NPiMCMC and eNPiMCMC in Listings 2 and 3, we claim that T
NPiMCMC

is the transition

kernel of NPiMCMC .
Proposition B.15. We consider some basic properties of T

NPiMCMC
.

1. T
NPiMCMC

is well-defined.

2. T
eNPiMCMC

(s,m−1(A)) = T
NPiMCMC

(m(s), A) for all s ∈ Svalid and A ∈ ΣT.

Proof. 1. Let t ∈ Supp(w) and A ∈ ΣT. Say s, s′ ∈ m−1({t}). Since only the instance of the in-
put state matters in eNPiMCMC (Listing 3), the value of T

NPiMCMC
(t, A) given by s and s′ are the same,

i.e. T
eNPiMCMC

(s,m−1(A)) = T
eNPiMCMC

(s′,m−1(A)).

2. Let s ∈ Svalid and A ∈ ΣT. Then, T
NPiMCMC

(m(s), A) = T
eNPiMCMC

(s′,m−1(A)) for some s′ ∈ m−1({m(s)}).

Since s ∈ m−1({m(s)}), we have T
eNPiMCMC

(s′,m−1(A)) = T
eNPiMCMC

(s,m−1(A)).

To show T
NPiMCMC

preserves the target distribution, we consider a distribution πn on each of the n-dimensional state

space S(n) := X(n) × Y(n) with density ζn (w.r.t. µS(n) ) given by

ζn(x,v) :=


1

Zn
· w(t) · pdfK(k)(takek(x,v)) if t ∈ instance(x) ∩ Supp(w) has dimension k ≤ n

0 otherwise

where Zn :=
∫

T [|t| ≤ ιX(n)] · w(t) µT(dt). Notice that Zn · ζn and Z · ζ are the same, except on non-valid states. The
following proposition shows how the state distribution π can be represented using πn.
Proposition B.16. Let n ∈ N.

1. πn is a probability measure.

2. For k ≤ n, Zk · πk = Zn · takek∗πn on Svalid
k .

3. Let g(n) : S(n) ⇀
⋃n

k=1 Svalid
k be the partial measurable function that returns the projection of the input state that is

valid, if it exists. Formally, g(n)(s) = takek(s) if takek(s) ∈ Svalid
k . Then Z · π = Zn · g(n)∗ πn on

⋃n
k=1 Svalid

k .

Proof. 1. Consider πn(S(n)),

πn(S
(n)) =

n∑
k=1

∫
S(n)

[t ∈ instance(x)] · [|t| = ιX(k)] ·
1

Zn
· w(t) · pdfK(k)(takek(x,v)) µS(n)(d(x,v))

=

n∑
k=1

∫
SuppιX(k)(w)

∫
T

∫
Y(k)

1

Zn
· w(t) · pdfK(k)(zip(t, t′),v′)) µY(k)(dv′) µT(dt′) µT(dt)

=

n∑
k=1

∫
SuppιX(k)(w)

∫
T

1

Zn
· w(t) µT(dt′) µT(dt) (K(k) is a probability kernel)

=

∫
T
[|t| ≤ ιX(n)] ·

1

Zn
· w(t) µT(dt) = 1
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2. Let S ∈ ΣS where S ⊆ Svalid
k . Hence Zk · ρk(s) = Zk · ρk(s′) if s ∈ S and s = takek(s

′). Then,

Zn · (takek∗πn)(S)

= Zn · πn(takek
−1(S))

=

∫
S(n)

[takek(s
′) ∈ S] · Zn · ζn(s′) µS(n)(d(s′))

=

∫
S(k)

[(s) ∈ S] · Zk · ζk(s) · µS(k)(d(s))

= Zk · πk(S)

3. Let S ∈ ΣS where S ⊆
⋃n

k=1 Svalid
k . Then, Z · ρ(s) = Zk · ρk(s) for all s ∈ S ∩ Svalid

k .

Z · π(S) =
∫
S

[s ∈ Svalid] · Z · ζ(s) µS(ds)

=

n∑
k=1

∫
S

[s ∈ Svalid
k ] · Z · ζ(s) µS(k)(ds)

=

n∑
k=1

∫
S

[s ∈ Svalid
k ] · Zk · ζk(s) µS(k)(ds)

=

n∑
k=1

Zk · πk(S ∩ Svalid
k )

= Zn

n∑
k=1

takek∗πn(S ∩ Svalid
k ) (i)

= Zn · πn(

n⋃
k=1

{s ∈ S(n) | takek(s) ∈ S ∩ Svalid
k })

= Zn · g(n)∗ πn(S).

Lemma B.17 (Invariant). Assuming H1 to 3, ν is the invariant distribution of the Markov chain generated by iterating the
Hyrbid NP-iMCMC algorithm (App. B.3).

Proof. Assuming (1) ν = m∗π on T and (2) µT = m∗µS on Supp(w), we have for any A ∈ ΣT,

ν(A) = m∗π(A) (1)

=

∫
S
T
eNPiMCMC

(s,m−1(A)) µS(ds) (Lem. B.14)

=

∫
Svalid

T
eNPiMCMC

(s,m−1(A)) µS(ds)

=

∫
Svalid

T
NPiMCMC

(m(s), A) µS(ds) (Prop. B.15.ii)

=

∫
Supp(w)

T
NPiMCMC

(t, A) m∗µS(dt)

=

∫
Supp(w)

T
NPiMCMC

(t, A) µT(dt) (2)

=

∫
T
T
NPiMCMC

(t, A) µT(dt).

It is enough to show (1) and (2).
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1. Let A ∈ ΣT where A ⊆ SuppιX(n)(w) and δ > 0. Then partitioning m−1(A) using Svalid
k , we have for sufficiently

large m,

m∗π(A)

= π

(
m⋃

k=1

m−1(A) ∩ Svalid
k

)
+ π

( ∞⋃
k=m+1

m−1(A) ∩ Svalid
k

)

<
Zm

Z
· g(m)

∗ πm

(
m⋃

k=1

m−1(A) ∩ Svalid
k

)
+ δ (Prop. B.15.iii, Prop. B.16.ii)

≤ Zm

Z
· πm({(zip(t, t′) ++ y,v) | t ∈ A, t′ ∈ T,y ∈ EιX(m)−ιX(n),v ∈ Y(m)}) + δ

=
1

Z

∫
A

∫
T

∫
EιX(m)−ιX(n)

w(t)·( ∫
Y(m)

pdfK(n)(taken(zip(t, t
′) ++ y,v)) µY(m)(dv)

)
µEιX(m)−ιX(n)(dy)µT(dt′)µT(dt) + δ

=
1

Z

∫
A

w(t) µT(dt) + δ (K(n) is a probability kernel)

= ν(A) + δ.

For any measurable set A ∈ ΣT, we have m∗π(A) = m∗π(A ∩ Supp(w)) =
∑∞

n=1 m∗π(A ∩ SuppιX(n)(w)) ≤∑∞
n=1 ν(A ∩ SuppιX(n)(w)) = ν(A ∩ Supp(w)) = ν(A). Since both ν and π are probability distributions, we also

have ν(A) = 1− ν(T \A) ≤ 1−m∗π(T \A) = 1− (1−m∗π(A)) = m∗π(A). Hence m∗π = ν on T.

2. Similarly, let A ∈ ΣT where A ⊆ SuppιX(n)(w) and δ > 0. Then by Prop. B.15.iii, for sufficiently large m, we must
have µS(

⋃∞
k=m+1 Svalid

k ) = µS(Svalid \ Svalid
≤m) < δ. Hence,

m∗µS(A)

= µS

(
m⋃

k=1

m−1(A) ∩ Svalid
k

)
+ µS

( ∞⋃
k=m+1

m−1(A) ∩ Svalid
k

)

<

m∑
k=1

µS(k)(m−1(A) ∩ Svalid
k ) + δ

=

m∑
k=1

µS(m)({(x,v) ∈ S(m) | takek(x,v) ∈ m−1(A) ∩ Svalid
k }) + δ

= µS(m)(

m⋃
k=1

{(x,v) ∈ S(m) | takek(x,v) ∈ m−1(A) ∩ Svalid
k }) + δ

≤ µS(m)({(zip(t, t′) ++ y,v) | t ∈ A, t′ ∈ T,y ∈ EιX(m)−ιX(n),v ∈ Y(m)}) + δ

= µT(A) + δ.

Then the proof proceeds as in (1). Note that since w almost surely terminating (H 2), m∗µS(Supp(w)) =
µT(Supp(w)) = 1

B.4.4. CORRECTNESS OF NP-IMCMC

The correctness of the NP-iMCMC sampler (Fig. 2) can be deduce from Lem. B.17 and the fact that Hyrbid NP-iMCMC is
a generalisation of NP-iMCMC
Corollary B.18 (Invariant). If all inputs satisfy V1 to 3 then ν is the invariant distribution of the Markov chain generated by
iterating the algorithm described in Fig. 2.
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C. Transforming Nonparametric Involutive MCMC
In this section, we discuss how the techniques discussed in (Neklyudov et al., 2020) can be applied to the Hybrid NP-iMCMC
sampler presented in App. B. Hence instances of the Hybrid NP-iMCMC sampler, such as NP-MH and NP-HMC, can be
extended using these techniques to become more flexible and efficient.

We assume the input target density function w : T → [0,∞) is tree representable, integrable (H 1) and almost surely
terminating (H2).

C.1. State-dependent Hybrid NP-iMCMC Mixture

Say we want to use multiple Hybrid NP-iMCMC samplers to simulate the posterior given by the target density function
w. The following technique allows us to ‘mix’ Hybrid NP-iMCMC samplers in such a way that the resulting sampler still
preserves the posterior.

Given a collection of Hybrid NP-iMCMC samplers, indexed by m ∈ Eα, for some α ∈ N, each with auxiliary kernels
{K(n)

m : X(n) ⇝ Y(n)}n∈N and involutions {Φ(n)
m : X(n)×Y(n) → X(n)×Y(n)}n∈N satisfying the projection commutation

property (H3), the State-dependent Hybrid NP-iMCMC Mixture sampler determines which Hybrid NP-iMCMC sampler to
use by drawing an indicator m ∈ Eα from a probability measure KM (x0, ·) where KM :

⋃
n∈N X(n) ⇝ Em is a probability

kernel and x0 is the entropy vector constructed from the current sample t0 at the initialisation step (Step 1 of Hybrid
NP-iMCMC). Then, using the m-indexed Hybrid NP-iMCMC sampler, a proposal t is generated and accepted with a
modified probability that includes the probability of picking m, namely

min

{
1;

w(t) · pdfK(k)
m(takek(x,v)) · φX(n)(x) · φY(n)(v)

w(t0) · pdfK(k0)
m(takek0

(x0,v0)) · φX(n)(x0) · φY(n)(v0)
· pdfKM (x0

1..k0 ,m)

pdfKM (x1..k,m)
· |det(∇Φ(n)

m(x0,v0))|
}

where (x0,v0) is the (possibly extended) initial state, (x,v) is the new state, n = dim (x0) = dim (v0), k0 is the dimension
of t0 (i.e. |t0| = ιX(k0)) and k is the dimension of t (i.e. |t| = ιX(k)).

Pseudocode This sampler can be implemented in SPCF as the MixtureNPiMCMC function in Listing 4. (Terms specific to
this technique are highlighted.) We assume the following SPCF terms exists: mixkernel of type List(X) -> (R*B)^l

implements the mixture kernel KM :
⋃

n∈N X(n) ⇝ Eα; pdfmixkernel of type List(X)*(R*B)^l -> R implements
the probability density function pdfKM :

⋃
n∈N X(n)×Eα → R ; and for each m ∈ Eα and n ∈ N, auxkernel[n][m] im-

plements the auxiliary kernel K(n)
m ; pdfauxkernel[n][m] and implements the pdf pdfK(n)

m; involution[n][m]

implements the involution Φ(n)
m; and absdetjacinv[n][m] implements the absolute value of the Jacobian determinant

of Φ(n)
m.

Correctness Similar to the correctness arguments in (Neklyudov et al., 2020), we show that the State-dependent Hybrid
NP-iMCMC Mixture sampler is correct by formulating MixtureNPiMCMC as an instance of NPiMCMC (Listing 2). This
means specifying auxkernel[n] and involution[n] in NPiMCMC and arguing that the resulting NPiMCMC function
is equivalent to MixtureNPiMCMC .

The SPCF terms mixauxkernel[n] and mixinvolution[n] given in Listing 5 should suffice. The auxiliary space is
expanded to embed the indicator m in such a way that the auxiliary variable mixv is in the space Eα × Y(n) where its first
ℓ-th components mixv[:l] gives m and the rest mixv[l:] gives v . Since the auxiliary space is expanded to include
the indicator, the maps mixindexX and mixindexY and the projection mixproj are modified accordingly.

To see how the NPiMCMC function with auxkernel[n] replaced by mixauxkernel[n] and involution[n]

replaced by mixinvolution[n] is equivalent to MixtureNPiMCMC , we onyl need to consider the probability density
of mixauxkernel[k] at mixproj((x,mixv),k) .� �

pdfmixauxkernel[k](x[:mixindexX(k)], mixv[:mixindexY(k)])
= pdfmixauxkernel[k](x[:indexX(k)], mixv[:l+indexY(k)])
= pdfmixkernel(x[:indexX(k)], mixv[:l]) * pdfauxkernel[k][mixv[:l]](x[:indexX(k)],

mixv[l:l+indexY(k)])



Nonparametric Involutive Markov Chain Monte Carlo

Listing 4. Pseudocode of the State-dependent Hybrid NP-iMCMC Mixture algorithm� �
1 def MixtureNPiMCMC(t0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 m = mixkernel(x0) # mixture step
5 v0 = auxkernel[k0][m](x0) # stochastic step
6 (x,v) = involution[k0][m](x0,v0) # deterministic step
7 n = k0 # extend step
8 while not intersect(instance(x),support(w)):
9 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))

10 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
11 n = n + 1
12 (x,v) = involution[n][m](x0,v0)
13 t = intersect(instance(x),support(w))[0] # accept/reject step
14 k = dim(t)
15 return t if uniform < min{1, w(t)/w(t0) *
16 pdfauxkernel[k][m](proj((x,v),k))/
17 pdfauxkernel[k0][m](proj((x0,v0),k0)) *
18 pdfpar[n](x)/pdfpar[n](x0) *
19 pdfaux[n](v)/pdfaux[n](v0) *
20 pdfmixkernel(proj(x,k),m)/
21 pdfmixkernel(proj(x0,k0),m) *
22 absdetjacinv[n][m](x0,v0)}
23 else t0� �

Listing 5. Pseudocode for the correctness of the State-dependent Hybrid NP-iMCMC Mixture algorithm� �
1 def mixauxkernel[n](x0)
2 m = mixkernel(x0)
3 v0 = auxkernel[n][m](x0)
4 return m + v0
5
6 def mixinvolution[n](x0,mixv0)
7 m = mixv0[:l]
8 v0 = mixv0[l:]
9 (x,v) = involution[n][m](x0,v0)

10 return (x,m + v)
11
12 def mixindexX(n): return indexX(n)
13 def mixindexY(n): return l + indexY(n)
14 def mixproj((x,v),k): return (x[:mixindexX(k)],v[:mixindexY(k)])� �
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= pdfmixkernel(x[:indexX(k)], m) * pdfauxkernel[k][m](x[:indexX(k)], v[:indexY(k)])
= pdfmixkernel(proj(x,k),m) * pdfauxkernel[k][m](proj((x,v),k))� �

where m = mixv[:l] and v = mixv[l:] . This shows that the acceptance probability in NPiMCMC is identical to that
in MixtureNPiMCMC and hence the two algorithms are equivalent.

C.2. Direction Hybrid NP-iMCMC Algorithm

Sometimes it is difficult to specify involutions that explores the model fully. The following technique tells us that bijections
are good enough.

Given endofunctions f (n) on X(n) × Y(n) that are differentiable almost everywhere and bijective for each n ∈ N such
that the sets {f (n)}n and {f (n)−1}n satisfy the projection commutative property (H3), the Direction Hybrid NP-iMCMC
algorithm randomly use either f (n) or f (n)−1

to move around the state space and proposes a new sample.

Pseudocode This sampler can be expressed in SPCF as the DirectionNPiMCMC function in Listing 6. (Terms specific
to this technique are highlighted.) We assume for each n ∈ N and d ∈ 2, there is a SPCF term bijection[n][d] where

bijection[n][True] implements the bijection f (n) and bijection[n][False] implements the inverse f (n)−1
and

SPCF term absdetjacbij[n][d] that implements the absolute value of the Jacobian determinant of f (n) if d = True

and the inverse f (n)−1
otherwise.

Correctness We show that DirectionNPiMCMC can be formulated as an instance of NPiMCMC (Listing 2) with a
specification of auxkernel[n] and involution[n] .

The SPCF terms dirauxkernel[n] and dirinvolution[n] in Listing 7 would work. The auxiliary space is expanded
to include the direction variable d0 so that the auxiliary variable dirv0 is in the space E × Y(n) where the Boolean-
component dirv0[0][1] of its first coordinate gives d0 and the second to last coordinates dirv0[1:] gives v0 .
(Note the value of dirv0[0][0] is redundant and is only used to make dirv0[0] an entropy.) Since the auxiliary space
is expanded, the maps dirindexX and dirindexY and the projection dirproj are modified accordingly.

To see how the NPiMCMC function with auxkernel[n] replaced by dirauxkernel[n] and involution[n]

replaced by dirinvolution[n] is equivalent to DirectionNPiMCMC , we first consider the density of
dirauxkernel[k0] at dirproj((x0,dirv0),k0) .� �

pdfdirauxkernel[k0](x0[:dirindexX(k0)], dirv0[:dirindexY(k0)])
= pdfdirauxkernel[k0](x0[:indexX(k0)], dirv0[:1+indexY(k0)])
= pdfcoin(dirv0[0][1]) * pdfnormal(dirv0[0][0]) * pdfauxkernel[k0](x0[:indexX(k0)],

dirv0[1:1+indexY(k0)])
= 0.5 * pdfnormal(dirv0[0][0]) * pdfauxkernel[k0](proj((x0,v0),k0))� �

where v0 = dirv0[1:] . A similar argument can be made for pdfdirauxkernel[k](dirproj((x,dirv),k)) ,
which makes the acceptance probability in NPiMCMC identical to that in DirectionNPiMCMC . Moreover, writing
d0 for dirv0[0][1] , the absolute value of the Jacobian determinant of dirinvolution[n] at (x0,dirv0) is
absdetjacbij[n][d0](x0,v0) . Most importantly, dirinvolution[n] is now involutive. Hence, NPiMCMC is the

same as DirectionNPiMCMC .

C.3. Persistent Hybrid NP-iMCMC Algorithm

It is known that irreversible transition kernels (those that does not satisfy detailed balance) have better mixing times,
i.e. converges more quickly to the target distribution, compared to reversible ones. The following technique gives us a
method to transform Hybrid NP-iMCMC algorithms to irreversible ones that still preserves the target distribution. The key is
to compose the Hybrid NP-iMCMC sampler with a transition kernel so that the resulting algorithm does not satisfy detailed
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Listing 6. Pseudocode of the Direction Hybrid NP-iMCMC algorithm� �
1 def DirectionNPiMCMC(t0):
2 d0 = coin # direction step
3 k0 = dim(t0) # initialisation step
4 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
5 v0 = auxkernel[k0](x0) # stochastic step
6 (x,v) = bijection[k0][d0](x0,v0) # deterministic step
7 n = k0 # extend step
8 while not intersect(instance(x),support(w)):
9 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))

10 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))
11 n = n + 1
12 (x,v) = bijection[n][d0](x0,v0)
13 t = intersect(instance(x),support(w))[0] # accept/reject step
14 k = dim(t)
15 return t if uniform < min{1, w(t)/w(t0) *
16 pdfauxkernel[k](proj((x,v),k))/
17 pdfauxkernel[k0](proj((x0,v0),k0)) *
18 pdfpar[n](x)/pdfpar[n](x0) *
19 pdfaux[n](v)/pdfaux[n](v0) *
20 absdetjacbij[n][d0](x0,v0)}
21 else t0� �

Listing 7. Pseudocode for dirauxkernel and dirinvolution� �
1 def dirauxkernel[n](x0)
2 d0 = coin
3 v0 = auxkernel[n](x0)
4 return [(normal, d0)] + v0
5
6 def dirinvolution[n](x0,dirv0)
7 d0 = dirv0[0][1]
8 v0 = dirv0[1:]
9 (x,v) = bijection[n][d0](x0,v0)

10 d = not d0
11 return (x, [(dirv0[0][0],d)] + v)
12
13 def dirindexX(n): return indexX(n)
14 def dirindexY(n): return 1+indexY(n)
15 def dirproj((x,v),k): return (x[:dirindexX(k)], v[:dirindexY(k)])� �
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balance.

The Persistent Hybrid NP-iMCMC algorithm is a MCMC algorithm similar to the Direction Hybrid NP-iMCMC sampler in
which the direction variable is used to determine auxiliary kernels ({K(n)

1 : X(n) ⇝ Y(n)}n or {K(n)
2 : X(n) ⇝ Y(n)}n) and

bijections ({f (n) : X(n) × Y(n) → X(n) × Y(n)}n or {f (n)−1
: X(n) × Y(n) → X(n) × Y(n)}n) being used. The difference

is that Persistent Hybrid NP-iMCMC keeps track of the direction (instead of sampling a fresh one in each iteration) and flips
it strategically to make the resulting algorithm irreversible.

Pseudocode This sampler can be expressed in SPCF as PersistentNPiMCMC in Listing 8. (Terms specific
to this technique are highlighted.) In addition to the SPCF terms in DirectionNPiMCMC , we assume there
is a SPCF term auxkernel[n][d] such that auxkernel[n][True] implements the auxiliary kernel K

(n)
1 :

X(n) ⇝ Y(n) and pdfauxkernel[n][True] its pdf pdfK(n)
1 and similarly for auxkernel[n][False] and

pdfauxkernel[n][False] . Note that PersistentNPiMCMC updates samples on the space X(n) × 2, which can
easily be marginalised to X(n) by taking the first ιX(n) components.

Correctness We show that PersistentNPiMCMC can be formulated as a composition of two instances of NPiMCMC

(Listing 2).

Consider the NPiMCMC with auxiliary kernel perauxkernel[n] and involution perinvolution[n] in Listing 9. In
this case, the parameter space is expanded to include the direction variable so that a parameter variable perx is on the
space E× X(n) where perx[0][1] gives d and perx[1:] gives x . Since the parameter space is expanded, the maps
perindexX and perindexY and projection perproj are modified accordingly.

Again, we first consider the density of perauxkernel[k0] at perproj((perx0,v0),k0) .� �
pdfperauxkernel[k0](perx0[:perindexX(k0)], v0[:perindexY(k0)])

= pdfauxkernel[k0][perx[0][1]](perx0[1:1+indexX(k0)], v0[:indexY(k0)])
= pdfauxkernel[k0][d0](x0[:indexX(k0)], v0[:indexY(k0)])
= pdfauxkernel[k0][d0](proj((x0,v0),k0))� �

where d0 = perx0[0][1] and x0 = perx0[1:] . A similar argument can be made for
pdfperauxkernel[k](perproj((perx,v),k)) . Moreover, the absolute value of the Jacobian determinant

of perinvolution[n] at (perx0,v0) is absdetjacbij[n][d0](x0,v0) . Hence, the acceptance probability in
NPiMCMC is identical to that in PersistentNPiMCMC .

The NPiMCMC function with auxkernel[n] replaced by perauxkernel[n] and involution[n] replaced by
perinvolution[n] is almost equivalent to PersistentNPiMCMC , except NPiMCMC induces a transition kernel on

E× X(n) whereas PersistentNPiMCMC induces a transition kernel on 2× X(n); and when the proposal t is accepted,
NPiMCMC returns d whereas PersistentNPiMCMC returns not d .

These differences can be reconciled by composing NPiMCMC with flipdir , which is an instance of NPiMCMC which
skips the stochastic step and has an involution that flips the direction variable stored in perx0[0][1] . The composition
generates a Markov chain on E × X(n) and marginalising it to a Markov chain on 2 × X(n) gives us the same result as
PersistentNPiMCMC .
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Listing 8. Pseudocode of the Persistent Hybrid NP-iMCMC algorithm� �
1 def PersistentNPiMCMC(t0,d0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = auxkernel[k0][d0](x0) # stochastic step
5 (x,v) = bijection[k0][d0](x0,v0) # deterministic step
6 n = k0 # extend step
7 while not intersect(instance(x),support(w)):
8 x0 = x0 + [(normal, coin)]*(indexX(n+1)-indexX(n))
9 v0 = v0 + [(normal, coin)]*(indexY(n+1)-indexY(n))

10 n = n + 1
11 (x,v) = bijection[n][d0](x0,v0)
12 d = not d0
13 t = intersect(instance(x),support(w))[0] # accept/reject step
14 k = dim(t)
15 return (t, not d) if uniform < min{1, w(t)/w(t0) *
16 pdfauxkernel[k][d](proj((x,v),k))/
17 pdfauxkernel[k0][d0](proj((x0,v0),k0)) *
18 pdfpar[n](x)/pdfpar[n](x0) *
19 pdfaux[n](v)/pdfaux[n](v0) *
20 absdetjacbij[n][d0](x0,v0)}
21 else (t0, d)� �

Listing 9. Pseudocode for perauxkernel and perinvolution� �
1 def perauxkernel[n](perx0)
2 d0 = perx0[0][1]
3 x0 = perx0[1:]
4 v0 = auxkernel[n][d0](x0)
5 return v0
6
7 def perinvolution[n](perx0,v0)
8 d0 = perx0[0][1]
9 x0 = perx0[1:]

10 (x,v) = bijection[n][d0](x0,v0)
11 d = not d0
12 return ([(perx0[0][0],d)] + x, v)
13
14 def perindexX(n): return 1+indexX(n)
15 def perindexY(n): return indexY(n)
16 def perproj((x,v),k): return (x[:perindexX(k)],v[:perindexY(k)])
17
18 def flipdir(perx0):
19 d0 = perx0[0][1]
20 perx0[0][1] = not d0
21 return perx0� �
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D. Multiple Step Nonparametric Involutive MCMC
In this section, we study the Multiple Step NP-iMCMC sampler, a generalisation of the Hybrid NP-iMCMC sampler
(App. B.3) (and also of NP-iMCMC (Fig. 2)), where the involution is applied multiple times to generate a proposed state.

D.1. Motivation

Step 4 in the Hyrbid NP-iMCMC sampler may seem inefficient. While it terminates almost surely (thanks to H2), This is
because whenever the dimension of the state is changed, the algorithm has to “re-run” the involution again (Step 4.ii). This
means the expected number of iterations may be infinite.

To remedy this problem, we introduce two new concepts:

• The slice function which might make “re-runs” (Step 4.ii) quicker.

• The Multiple Step NP-iMCMC sampler, a generaliation of Hyrbid NP-iMCMC, which uses a list of bijections to move
around the state space.

D.2. Slice function

For each dimension n ∈ N, we call the measurable function s(n) : S(n) → EιX(n)−ιX(n−1) × EιY(n)−ιY(n−1) a slice of the
endofunction Φ(n) on S(n) if it captures the movement of the n-th dimensional states with an instance of dimension lower
than n. Formally, this means

s(n)(x,v) = (dropn−1 ◦ Φ(n))(x,v) if t ∈ instance(x) ∩ Supp(w) and |t| < ιX(n).

Note we can always define a slice of Φ(n) by setting s(n) := dropn−1 ◦ Φ(n).

With the slice function s(n) defined for each involution Φ(n), Step 4.ii in the Hyrbid NP-iMCMC algorithm (App. B.3):

(Step 4.ii) Move around the n+ 1-dimensional state space X(n+1) × Y(n+1) and compute the new state by applying the
involution Φ(n+1) to the initial state (x0 ++ y0,v0 ++ u0);

can be replaced by the following Step 4.ii’:

(Step 4.ii’) Replace and extend the n-dimensional new state from (x,v) to a state (x++ y,v ++ u) of dimension n+ 1
where (y,u) is the result of s(n+1)(x0 ++ y0,v0 ++ u0).

By H3, the first n components of the new n+ 1-dimensional state Φ(n+1)(x0 ++ y0,v0 ++ u0) is

taken(Φ
(n+1)(x0 ++ y0,v0 ++ u0)) = Φ(n)(taken(x0 ++ y0,v0 ++ u0)) = Φ(n)(x0,v0) = (x,v)

and by the definition of slice the (n+ 1)-th component of the new state is

dropn(Φ
(n+1)(x0 ++ y0,v0 ++ u0)) = s(n+1)(x0 ++ y0,v0 ++ u0).

Hence the new state computed by Step 4.ii and Step 4.ii’ are the same.

The slice function s(n) is useful when the involution is computationally expensive but has a light slice function. After
Step 4.ii is replaced by Step 4.ii’, the Hyrbid NP-iMCMC sampler need only to run the involution once (Step 3) and any
subsequent “re-runs” (Step 4) can be performed by the slice function.

If the slice function s(n) is implemented as slice[n] in SPCF, Line 11 in NPiMCMC can be changed from
(x,v) = involution[n](x0,v0) to� �

(x’,v’) = slice[n](x0,v0); (x,v) = (x + x’, v + v’)� �
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D.2.1. EXAMPLE (HMC)

Momentum update is the most computationally heavy component in the HMC sampler. Hence it would be useful if it has a
lightweight slice function.

In the setting of Hyrbid NP-iMCMC, we assume the trace space T is a list measurable space of the Real measurable space R.
Then, the n-dimensional momentum update ϕM

k is an endofunction on Rn × Rn defined as

ϕM
k (q,p) := (q,p− k∇U(q))

where U(q) := − log max{w(t) | t ∈ instance(q)}. is the n-dimensional potential energy.

Given a n-dimensional state (q,p) where t ∈ instance(q) ∩ Supp(w) has dimension lower than n, the gradient of the
potential energy U at q w.r.t. the n-th coordinate is zero. Hence,

(dropn−1 ◦ ϕM
k )(q,p) = dropn−1(q,p− k∇U(q)) = (qn,pn),

and the slice of the momentum update ϕM
k is simply the projection dropn−1(q,p) := (qn,pn).

However, not all 2L momentum updates in the re-runs of the leapfrog function L can be replaced by its slice dropn−1. This
is because when the dimension increments to say n+1, only the extended initial state (x0 ++y0,v0 ++u0) has the property
that it has an instance with dimension lower than n+ 1 and not the intermediate states.

D.3. Multiple Step NP-iMCMC

Say the involution of a Hybrid NP-iMCMC sampler is comprised of a list of bijective endofunctions on S(n), namely
Φ(n) := f

(n)
L ◦ · · · ◦ f (n)

2 ◦ f (n)
1 . To compute the new state, we can either

• apply the involution Φ(n) to the initial state (x0,v0) in one go and check whether the result (x,v) has an instance in
the support of w, or

• for each ℓ = 1, . . . , L, apply the endofunction f
(n)
ℓ to (xℓ−1,vℓ−1) and (immediately) check whether the intermediate

state (xℓ,vℓ) has an instance in the support of w.

The Hybrid NP-iMCMC sampler presented in App. B.3 takes the first option as it is conceptually simpler. However, the
second option is just as valid and more importantly give us the requirements needed to replace each endofunction by its slice
in any subsequent “re-runs”.

D.3.1. THE MULTIPLE STEP NP-IMCMC ALGORITHM

Assume the target density w satisfies V1 and 2; and for each n ∈ N, there is a probability kernel K(n) and a list of L bijective
endofunctions {f (n)

ℓ : S(n) → S(n) | ℓ = 1, . . . , L}n such that for each ℓ, {f (n)
ℓ }n satisfies the projection commutation

property (V3) and for each n ∈ N, their composition f
(n)
L ◦ · · · ◦ f (n)

1 is involutive.

Let s(n)ℓ be a slice of the endofunction f
(n)
ℓ . Given a SPCF program M with weight function w on the trace space, the

Multiple Step NP-iMCMC sampler generates a Markov chain as follows. Given a current sample t0 of dimension k0,

1. (Initialisation Step) Form a k0-dimensional parameter variable x0 ∈ X(k0) by pairing each value t0i in t0 with a randomly
drawn value t of the other type to make a pair (t0i, t) or (t, t0i) in the entropy space E.

2. (Stochastic Step) Introduce randomness to the sampler by drawing a k0-dimensional value v0 ∈ Y(k0) from the probability
measure K(k0)(x0, ·).

3. (Multiple Step) Initialise ℓ = 1. If ℓ = L, proceed to Step 4 with t as the proposed sample; otherwise

3.1. (Deterministic Step) Compute the ℓ-th state (xℓ,vℓ) by applying the endofunction f
(n)
ℓ to (xℓ−1,vℓ−1) where

n = dim (xℓ−1).
3.2. (Extend Step) Test whether any instance t of xℓ is in the support of w. If so, go to Step 3 with an incremented ℓ;

otherwise (none of the instances of xℓ is in the support of w),
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3.2.i Extend and replace the n-dimensional initial state from (x0,v0) to a state (x0++y0,v0++u0) of dimension
n+ 1 where y0 and u0 are values drawn randomly from µEιX(n+1)−ιX(n) and µEιY(n+1)−ιY(n) respectively.

3.2.ii For each i = 1, . . . , ℓ, extend and replace the n-dimensional i-th intermediate state from (xi,vi) to a state
(xi ++ yi,vi ++ ui) of dimension n+ 1 where (yi,ui) is the result of s(n+1)

i (xi−1,vi−1).
3.2.iii Go to Step 3.2 with the extended n+ 1-dimensional states (xi,vi) for i = 0, . . . , ℓ.

4. (Accept/reject Step) Accept the proposed sample t as the next sample with probability

min

{
1;

w(t) · pdfK(k)(takek(xL,vL)) · φX(n)(xL) · φY(n)(vL)

w(t0) · pdfK(k0)(takek0
(x0,v0)) · φX(n)(x0) · φY(n)(v0)

·
L∏

ℓ=1

|det(∇f (n)
ℓ (xℓ−1,vℓ−1))|

}
where n = dim (x0) = dim (v0), k is the dimension of t and k0 is the dimension of t0; otherwise reject the proposal
and repeat t0.

Unlike in Hybrid NP-iMCMC, the Multiple Step NP-iMCMC sampler computes the intermediate states {(xℓ,vℓ)}ℓ=1,...,L

one-by-one, making sure in Step 3.2 that each of these state (xℓ,vℓ) has an instance in the support of w. Hence when the
dimension is incremented from n to n+ 1 we can use the slice functions to extend intermediate states to states of dimension
n+ 1.
Remark D.1. The Multiple Step NP-iMCMC sampler can be seen as a generalisation of Hybrid NP-iMCMC (and hence
a generalisation of NP-iMCMC (App. B.3.2)) as we can recover Hybrid NP-iMCMC by setting L to one and taking the
involution Φ(n) as the only endofunction in Multiple Step NP-iMCMC.

D.3.2. PSEUDOCODE OF MULTIPLE STEP NP-IMCMC ALGORITHM

Listing 10 gives a SPCF implementation of Multiple Step NP-iMCMC as the function MultistepNPiMCMC with target
density w ; auxiliary kernel auxkernel[n] and its density pdfauxkernel[n] and L number of endofunctions
f[n][l] ( l ranges from 1 to L ) for each dimension n with slice slice[n][l] and the absolute value of its

Jacobian determinant absdetjacf[n][l] ; parameter and auxiliary index maps indexX and indexY and projection
proj .

D.3.3. CORRECTNESS OF MULTIPLE STEP NP-IMCMC ALGORITHM

The Multiple Step NP-iMCMC sampler cannot be formulated as an instance of Hybrid NP-iMCMC and requires a separate
proof. Nonetheless, the arguments are similar.

• Prop. B.3 tells us that as long as w almost surely terminates (V2), the measure of a n-dimensional parameter variable
not having any instances in the support of w tends to zero as the dimension n tends to infinity. As f (n)

ℓ is bijective (and
hence invertible), the Multiple Step NP-iMCMC sampler almost surely satisfies the condition in the loop in Step 3.2
and hence almost surely terminates.

• Next, we identify the state distribution of Multiple Step NP-iMCMC. We say a n-dimensional state (x,v) is valid if

(i) For all ℓ = 1, . . . , L, instance(xℓ)∩Supp(w) ̸= ∅ where (x0,v0) := (x,v) and (xℓ,vℓ) := f
(n)
ℓ (xℓ−1,vℓ−1);

and
(ii) For all ℓ = 1, . . . , L, instance(yℓ) ∩ Supp(w) ̸= ∅ where (y0,u0) := (x,v) and (yL−ℓ+1,uL−ℓ+1) :=

f
(n)
ℓ

−1
(yL−ℓ,uL−ℓ); and

(iii) For all k < n, takek(x,v) is not a valid state.

Then, we can define the state distribution and show that the state movement in Multiple Step NP-iMCMC is invariant
against this distribution.

• Finally, we conclude by Lem. B.17 that the Multiple Step NP-iMCMC sampler is correct.

D.3.4. TRANSFORMING MULTIPLE STEP NP-IMCMC SAMPLER

Recall we discussed three techniques in App. C, each when applied to the Hybrid NP-iMCMC sampler, improve its flexibility
and/or efficiency. We now see how these techniques can be applied to Multiple Step NP-iMCMC.
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Listing 10. Code for Multiple Step NP-iMCMC� �
1 def MultistepNPiMCMC(t0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = auxkernel[k0](x0) # stochastic step
5
6 # start of multiple step
7 n = k0
8 (x[0],v[0]) = (x0,v0)
9 for l in range(1,L+1):

10 (x[l],v[l]) = f[n][l](x[l-1],v[l-1]) # deterministic step
11 while not intersect(instance(x[l]),support(w)): # extend step
12 x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
13 v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
14 for i in range(1,l+1):
15 (y,u) = slice[n+1][i](x[i-1],v[i-1])
16 (x[i],v[i]) = (x[i]+y, v[i]+u)
17 n = n + 1
18 (x0,v0) = (x[0],v[0])
19 (x,v) = (x[L],v[L])
20 # end of multiple step
21
22 t = intersect(instance(x),support(w))[0] # accept/reject step
23 k = dim(t)
24 return t if uniform < min{1,w(t)/w(t0) *
25 pdfauxkernel[k](proj((x,v),k))/
26 pdfauxkernel[k0](proj((x0,v0),k0)) *
27 pdfpar[n](x)/pdfpar[n](x0) *
28 pdfaux[n](v)/pdfaux[n](v0) *
29 product([absdetjacf[n][l](x[l-1],v[l-1]) for l in range(1,L+1)])

}
30 else t0� �
D.3.5. STATE-DEPENDENT MULTIPLE STEP NP-IMCMC MIXTURE

This technique allows us to ‘mix’ Multiple Step NP-iMCMC samplers in such a way that the resulting sampler still
preserves the posterior. Given a collection of Multiple Step NP-iMCMC samplers, indexed by m ∈ Eα for some α ∈ N,
the State-dependent Multiple Step NP-iMCMC Mixture sampler draws an indicator m ∈ Eα from a probability measure
KM (x0, ·) on Eα where KM :

⋃
n∈N X(n) ⇝ Eα is a probability kernel and x0 is the parameter variable constructed from

the current sample t0 in Step 1. A proposal t is then generated by running Steps 2 and 3 of the m-indexed Multiple Step
NP-iMCMC sampler, and is accepted with a modified probability that includes the probability of picking m.

Pseudocode Listing 11 gives the SPCF implementation of this sampler as the MixtureMSNPiMCMC function. (Terms
specific to this technique are highlighted.) We assume the SPCF term mixkernel implements the mixture kernel
KM ; pdfmixkernel implements the probability density function pdfKM ; and for each m ∈ Eα and n ∈ N,
auxkernel[n][m] implements the auxiliary kernel and pdfauxkernel[n][m] implements its density; f[n][l][m]

implements the endofunction slice[n][l][m] implements its slice and absdetjacf[n][l][m] implements the ab-
solute value of the Jacobian determinant of the endofunction of the m -indexed Multiple Step NP-iMCMC sampler.

Correctness MixtureMSNPiMCMC can be formulated as an instance of MultistepNPiMCMC with auxiliary kernel
mixauxkernel[n] and its density mixpdfauxkernel[n] and L number of endofunctions mixf[n][l] ( l ranges

from 1 to L ) for each dimension n with slice mixslice[n][l] and the absolute value of its Jacobian determinant
absdetjacmixf[n][l] ; parameter and auxiliary index maps mixindexX and mixindexY and projection mixproj

given in Listing 12.
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Listing 11. Pseudocode of the State-dependent Multiple Step NP-iMCMC Mixture algorithm� �
1 def MixtureMSNPiMCMC(t0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 m = mixkernel(x0) # mixture step
5 v0 = auxkernel[k0][m](x0) # stochastic step
6
7 # start of multiple step
8 n = k0
9 (x[0],v[0]) = (x0,v0)

10 for l in range(1,L+1):
11 (x[l],v[l]) = f[n][l][m](x[l-1],v[l-1]) # deterministic step
12 while not intersect(instance(x[l]),support(w)): # extend step
13 x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
14 v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
15 for i in range(1,l+1):
16 (y,u) = slice[n+1][i][m](x[i-1],v[i-1])
17 (x[i],v[i]) = (x[i]+y, v[i]+u)
18 n = n + 1
19 (x0,v0) = (x[0],v[0])
20 (x,v) = (x[L],v[L])
21 # end of multiple step
22
23 t = intersect(instance(x),support(w))[0] # accept/reject step
24 k = dim(t)
25 return t if uniform < min{1, w(t)/w(t0) *
26 pdfauxkernel[k][m](proj((x,v),k))/
27 pdfauxkernel[k0][m](proj((x0,v0),k0)) *
28 pdfpar[n](x)/pdfpar[n](x0) *
29 pdfaux[n](v)/pdfaux[n](v0) *
30 pdfmixkernel(proj(x,k),m)/
31 pdfmixkernel(proj(x0,k0),m) *
32 product([absdetjacf[n][m](x[l-1],v[l-1]) for l in range

(1,L+1)])}
33 else t0� �

Listing 12. Pseudocode for the correctness of State-dependent Multiple Step NP-iMCMC Mixture� �
1 def mixauxkernel[n](x0):
2 m = mixkernel(x0)
3 v0 = auxkernel[n][m](x0)
4 return m + v0
5
6 def mixf[n][l](x0,mixv0):
7 m = mixv0[:a]
8 v0 = mixv0[a:]
9 (x,v) = f[n][l][m](x0,v0)

10 return (x,m + v)
11
12 def mixslice[n][l](x0,mixv0):
13 m = mixv0[:a]
14 v0 = mixv0[a:]
15 (y,u) = slice[n][l][m](x0,v0)
16 return (y,u)
17
18 def mixindexX(n): return indexX(n)
19 def mixindexY(n): return a + indexY(n)
20 def mixproj((x,v),k): return (x[:mixindexX(k)],v[:mixindexY(k)])� �
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D.3.6. DIRECTION MULTIPLE STEP NP-IMCMC

This technique allows us to relax the assumption that the composition f
(n)
L ◦ · · · ◦ f (n)

2 ◦ f (n)
1 is involutive. Assume for

ℓ = 1, . . . , L, both sets {f (n)
ℓ }n and {f (n)

ℓ

−1
}n satisfy the projection commutation property (V3), the Direction Multiple

Step NP-iMCMC sampler randomly employ either f (n)
L ◦ · · · ◦ f (n)

2 ◦ f (n)
1 or f (n)

1

−1
◦ f (n)

2

−1
◦ · · · ◦ f (n)

L

−1
to move around

the n-dimensional state space and proposes a new sample.

Pseudocode Listing 13 gives the SPCF implementation of this sampler as DirectionMSNPiMCMC function. (Terms spe-
cific to this technique are highlighted.) We assume for each n ∈ N and d ∈ 2, the SPCF term f[n][l][True] implements

the endofunction f
(n)
ℓ and f[n][l][False] implements the inverse f

(n)
L−ℓ+1

−1
; slice[n][l][True] implements

the slice of f (n)
ℓ and slice[n][l][False] implements the slice of f (n)

L−ℓ+1

−1
; and absdetjacf[n][l][True]

implements the absolute value of the Jacobian determinant of f (n)
ℓ and absdetjacf[n][l][False] implements that of

f
(n)
L−ℓ+1.

Correctness DirectionMSNPiMCMC can be formulated as an instance of MultistepNPiMCMC with auxiliary kernel
dirauxkernel[n] and its density pdfdirauxkernel[n] and dirL number of endofunctions dirf[n][l] ( l

ranges from 1 to dirL ) for each dimension n with slice dirslice[n][l] and the absolute value of its Jacobian
determinant absdetjacf[n][l] ; parameter and auxiliary index maps dirindexX and dirindexY and projection
dirproj given in Listing 14. Note the dirf[n] function denotes the composition that flips the direction after applying

the endofunctions f (n)
ℓ for ℓ = 1, . . . , L with an inverse the flips the direction and then apply the endofunctions f (n)

L−ℓ+1 for
ℓ = 1, . . . , L.

D.3.7. PERSISTENT MULTIPLE STEP NP-IMCMC ALGORITHM

This technique gives us a method to construct irreversible Multiple Step NP-iMCMC samplers. The key is to persist the
direction from a previous iteration.

The Persistent Multiple Step NP-iMCMC sampler keeps trace of a direction variable d0 ∈ 2 (instead of sampling a fresh
one at the start) and use it to determine the auxiliary kernel (K(n)

T : X(n) ⇝ Y(n) or K(n)
F : X(n) ⇝ Y(n)) and list of

endofunctions (f (n)
L ◦ · · · ◦ f (n)

1 or f (n)
1

−1
◦ · · · ◦ f (n)

L

−1
) employed. This direction variable is flipped strategically to make

the resulting algorithm irreversible.

Pseudocode Listing 15 gives the SPCF implementation of this sampler as the function PersistentMSNPiMCMC .
(Terms specific to this technique are highlighted.) In addition to the SPCF terms in DirectionMSNPiMCMC , the SPCF
term auxkernel[n][True] implements the auxiliary kernel K(n)

T and pdfauxkernel[n][True] implements its

density pdfK(n)
T and auxkernel[n][False] implements the auxiliary kernel K(n)

F and pdfauxkernel[n][False]

implements its density pdfK(n)
F. Note that PersistentMSNPiMCMC updates samples on the space X(n) × 2, which can

easily be marginalised to X(n) by taking the first ιX(n) components.

Correctness Consider the MultistepNPiMCMC function with auxiliary kernel perauxkernel[n] and its density
pdfperauxkernel[n] and perL number of endofunctions perf[n][l] ( l ranges from 1 to perL ) for each

dimension n with slice perslice[n][l] and the absolute value of its Jacobian determinant absdetjacperf[n][l] ;
parameter and auxiliary index maps perindexX and perindexY and projection perproj given in Listing 16.

The MultistepNPiMCMC function with the primitives indicated in Listing 16 is almost equivalent to
PersistentMSNPiMCMC , except MultistepNPiMCMC induces a transition kernel on E × X(n) whereas
PersistentMSNPiMCMC induces a transition kernel on 2 × X(n); and when the proposal t is accepted,
MultistepNPiMCMC returns d whereas PersistentMSNPiMCMC returns not d .

By composing MultistepNPiMCMC with flipdir which flips the direction and marginalising the Markov chain
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Listing 13. Pseudocode of the Direction Multiple Step NP-iMCMC algorithm� �
1 def DirectionMSNPiMCMC(t0):
2 d0 = coin # direction step
3 k0 = dim(t0) # initialisation step
4 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
5 v0 = auxkernel[k0](x0) # stochastic step
6 n = k0 # multiple step
7 (x[0],v[0]) = (x0,v0)
8 for l in range(1,L+1):
9 (x[l],v[l]) = f[n][l][d0](x[l-1],v[l-1]) # deterministic step

10 while not intersect(instance(x[l]),support(w)): # extend step
11 x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
12 v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
13 for i in range(1,l+1):
14 (y,u) = slice[n+1][i][d0](x[i-1],v[i-1])
15 (x[i],v[i]) = (x[i]+y, v[i]+u)
16 n = n + 1
17 (x0,v0) = (x[0],v[0])
18 (x,v) = (x[L],v[L])
19 d = not d0 # flip direction (not used)
20 t = intersect(instance(x),support(w))[0] # accept/reject step
21 k = dim(t)
22 return t if uniform < min{1, w(t)/w(t0) *
23 pdfauxkernel[k](proj((x,v),k))/
24 pdfauxkernel[k0](proj((x0,v0),k0)) *
25 pdfpar[n](x)/pdfpar[n](x0) *
26 pdfaux[n](v)/pdfaux[n](v0) *
27 product([absdetjacf[n][l][d0](x[l-1],v[l-1]) for l in

range(1,L+1)])}
28 else t0� �

Listing 14. Pseudocode for the correctness of Direction Multiple Step NP-iMCMC� �
1 def dirauxkernel[n](x0):
2 d0 = coin
3 v0 = auxkernel[n](x0)
4 return [(normal, d0)] + v0
5
6 def dirf[n][l](x,dirv):
7 d = dirv[0][1]
8 v = dirv[1:]
9 if l == dirL: return (x,[(dirv[0][0],not d)] + v)

10 else:
11 (x,v) = f[n][l][d](x,v)
12 return (x, [(dirv[0][0],d)] + v)
13
14 def dirslice[n][l](x,dirv):
15 d = dirv[0][1]
16 v = dirv[1:]
17 return slice[n][l][d](x,v)
18
19 dirL = L+1
20 def dirindexX(n): return indexX(n)
21 def dirindexY(n): return 1+indexY(n)
22 def dirproj((x,v),k): return (x[:dirindexX(k)], v[:dirindexY(k)])� �
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Listing 15. Pseudocode of the Persistent Multiple Step NP-iMCMC algorithm� �
1 def PersistentMSNPiMCMC(t0,d0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = auxkernel[k0][d0](x0) # stochastic step
5 n = k0 # multiple step
6 (x[0],v[0]) = (x0,v0)
7 for l in range(1,L+1):
8 (x[l],v[l]) = f[n][l][d0](x[l-1],v[l-1]) # deterministic step
9 while not intersect(instance(x[l]),support(w)): # extend step

10 x[0] = x[0] + [(normal, coin)]*(indexX(n+1)-indexX(n))
11 v[0] = v[0] + [(normal, coin)]*(indexY(n+1)-indexY(n))
12 for i in range(1,l+1):
13 (y,u) = slice[n+1][i][d0](x[i-1],v[i-1])
14 (x[i],v[i]) = (x[i]+y, v[i]+u)
15 n = n + 1
16 (x0,v0) = (x[0],v[0])
17 (x,v) = (x[L],v[L])
18 d = not d0 # flip direction
19 t = intersect(instance(x),support(w))[0] # accept/reject step
20 k = dim(t)
21 return (t, not d) if uniform < min{1, w(t)/w(t0) *
22 pdfauxkernel[k][d](proj((x,v),k))/
23 pdfauxkernel[k0][d0](proj((x0,v0),k0)) *
24 pdfpar[n](x)/pdfpar[n](x0) *
25 pdfaux[n](v)/pdfaux[n](v0) *
26 product([absdetjacf[n][l][d0](x[l-1],v[l-1]) for l in range(1,L

+1)])}
27 else (t0, d)� �

Listing 16. Pseudocode for the correctness of Persistent Multiple Step NP-iMCMC� �
1 def perauxkernel[n](perx0)
2 d0 = perx0[0][1]; x0 = perx0[1:]
3 v0 = auxkernel[n][d0](x0)
4 return v0
5
6 def perf[n][l](perx,v)
7 d = perx[0][1]; x = perx[1:]
8 if l == perL: return ([(perx[0][0],not d)] + x, v)
9 else:

10 (x,v) = f[n][l][d](x,v)
11 return ([(perx[0][0],d)] + x, v)
12
13 def perslice[n][l](perx,v)
14 d = perx[0][1]; x = perx[1:]
15 return slice[n][l][d](x,v)
16
17 perL = L+1
18 def perindexX(n): return 1+indexX(n)
19 def perindexY(n): return indexY(n)
20 def perproj((x,v),k): return (x[:perindexX(k)],v[:perindexY(k)])
21
22 def flipdir(perx0,v0):
23 perx0[0][1] = not perx0[0][1]
24 return (perx0,v0)� �



Nonparametric Involutive Markov Chain Monte Carlo

generated by the composition from E× X(n) to 2× X(n), we get PersistentMSNPiMCMC .
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E. Examples of Nonparametric Involutive MCMC
In this section, we design novel nonparametric samplers using the Hybrid NP-iMCMC method described in App. B or the
Multiple Step NP-iMCMC method described in App. D.

We assume the target density function w on the trace space T is tree representable and satisfies H1 and 2. Specifications of
the auxiliary kernels and involutions are given for each sampler.

E.1. Nonparametric Metropolis-Hastings

As discussed in Sec. 2.1, the standard MH sampler can be seen as an instance of the iMCMC sampler with the proposal
distribution q as the auxiliary kernel and a swap function as the involution.

Suppose a proposal kernel q(n) : En ⇝ En exists for each dimension n ∈ N. Setting both ιX and ιY to be identities (which
means X(n) = Y(n) = En for all n ∈ N), the Hybrid NP-iMCMC method (App. B.3) gives an nonparametric extension of
the MH sampler.

Listing 17. Pseudocode of the NP-MH algorithm� �
1 def NPMH(t0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = q[k0](x0) # stochastic step
5 (x,v) = (v0,x0) # deterministic step
6 while not intersect(instance(x),support(w)): # extend step
7 x0 = x0 + [(normal, coin)]
8 v0 = v0 + [(normal, coin)]
9 (x,v) = (v0,x0)

10 t = intersect(instance(x),support(w))[0] # accept/reject step
11 k = dim(t)
12 return t if uniform < min{1, w(t)/w(t0) * pdfq[k](proj((x,v),k))/pdfq[k0](proj((x0,v0)

,k0))}
13 else t0� �
The NPMH function in Listing 17 is a SPCF implementation of this sampler. It can seen as an instance of the NPiMCMC

function with auxkernel[n] replaced by the proposal distribution q[n] , pdfauxkernel[n] replaced by the pdf of
the proposal distribution pdfq[n] , involution[n] replaced by a swap function, and indexX and indexY replaced
by identities, alongside a simplified acceptance ratio as (x,v) = (v0,x0), φX(n) = φY(n) , and

φX(n)(x)

φX(n)(x0)
· φY(n)(v)

φY(n)(v0)
· |det∇Φ(n)(x0,v0)| = 1.

E.2. Nonparametric Metropolis-Hastings with Persistence

Following the persistent technique described in App. C.3 for Hybrid NP-iMCMC, we can form a nonreversible variant of
the NP-MH sampler described in App. E.1. We call the resulting algorithm the Nonparametric Metropolis-Hastings with
Persistence (NP-MH-P) sampler.

Suppose a proposal kernel q(n) : En ⇝ En exists for each dimension n ∈ N. Similar to NP-MH, both ιX and ιY
are set to be identities (which means X(n) = Y(n) = En for all n ∈ N). Following (Turitsyn et al., 2011), given a
parameter variable x ∈ En, we can partition the auxiliary space En into two sets Ux,+ := {v ∈ En | η(v) ≥ η(x)} and
Ux,− := {v ∈ En | η(v) < x(x)} where η : En → R is some measurable function; and form two kernels K(n)

+ and
K(n)

− from q(n) defined as

K(n)
+(x, V ) :=

q(n)(V ∩ Ux,+)

q(n)(Ux,+)
and K(n)

−(x, V ) :=
q(n)(V ∩ Ux,−)

q(n)(Ux,−)
. (3)

Using the Persistent (Hybrid) NP-iMCMC sampler as described in App. C.3, a nonreversible variant of NP-MH can be
formed.
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Listing 18. Pseudocode of the NP-MH with Persistence algorithm� �
1 def NPMHwP(t0,d0):
2 k0 = dim(t0) # initialisation step
3 x0 = [(e, coin) if Type(e) in R else (normal, e) for e in t0]
4 v0 = auxkernel[k0][d0](x0) # stochastic step
5 (x,v) = (v0,x0) # deterministic step
6 n = k0 # extend step
7 while not intersect(instance(x),support(w)):
8 x0 = x0 + [(normal, coin)]
9 v0 = v0 + [(normal, coin)]

10 n = n + 1
11 (x,v) = (v0,x0)
12 d = not d0
13 t = intersect(instance(x),support(w))[0] # accept/reject step
14 k = dim(t)
15 return (t, not d) if uniform < min{1, w(t)/w(t0) *
16 pdfauxkernel[k][d](proj((x,v),k))/
17 pdfauxkernel[k0][d0](proj((x0,v0),k0))}
18 else (t0, d)� �
The LiftedNPMH function in Listing 18 is a SPCF implementation of this sampler. It can seen as an in-
stance of the PersistentNPiMCMC function (Listing 8) with auxkernel[n][True] implementing K(n)

+ and
auxkernel[n][False] implementing K(n)

−.

See how the direction d0 (and hence the family of auxiliary kernels) is persisted if the proposal t is accepted.

E.3. Nonparametric Hamiltonian Monte Carlo

The Nonparametric Hamiltonian Monte Carlo (NP-HMC) is a MCMC sampler introduced by (Mak et al., 2021b) for
probabilistic programming. Here we show that it is an instance of the Direction Multiple Step NP-iMCMC sampler
(App. D.3.6).

Typically, the Hamiltonian Monte Carlo (HMC) sampler takes a target density on Rn and proposes a new state by simulating
L leapfrog steps:

L := (ϕM
ϵ/2 ◦ ϕ

P
ϵ ◦ ϕM

ϵ/2)
L

where ϕM
ϵ (x,v) := (x,v − ϵ∇U(x)) and ϕP

ϵ (x,v) := (x+ ϵv,v) are the momentum and position updates with step size
ϵ respectively. Notice that that the momentum and position updates satisfy projection commutation property (H3), have
inverses (ϕM

ϵ )
−1

= M ◦ ϕM
ϵ ◦M and (ϕP

ϵ )
−1

= M ◦ ϕP
ϵ ◦M where M(x,v) := (x,−v) and slices dropn−1 (for ϕM

ϵ/2,
see App. D.2.1 for more details) and (x,v) 7→ (xn + ϵvn,vn) (for ϕP

ϵ ) respectively. Moreover, the absolute value of the
Jacobian determinant of both updates are |det∇ϕM

ϵ (x,v)| = |det∇ϕP
ϵ/2(x,v)| = 1.

Given a target density w on
⋃

n∈N Rn, the HMC sampler can be extended using the Direction Multiple Step NP-iMCMC
sampler. Given an input sample t0 ∈ Rk0 , a k0-dimensional initial state (x0,v0) is formed where x0 := t0 and v0 drawn
from K(n)(x, ·) := Nn. A direction variable d0 is drawn to determine whether the leapfrog steps L or its inverse L−1 is
performed on the initial state (x0,v0), one update at a time, extending the dimension as required. Say the initial state is
extended to a n-dimensional state (x0,v0) and is traversed to the n-dimensional new state (x∗,v∗) which has an instance t
in the support of w. t is returned with probability

min

{
1;

w(t) · φn(x
∗) · φn(v

∗)

w(t0) · φn(x0) · φn(v0)

}
.

Pseudocode of NP-HMC Listing 19 gives the SPCF implementations leapfrog[n][m] and
leapfrogslice[n][m] , where leapfrog[n][m][True] and leapfrogslice[n][m][True] return the
m -th endofunction and its slice in the composition (ϕM

ϵ/2 ◦ ϕ
P
ϵ ◦ ϕM

ϵ/2)
L of 3L updates respectively; and similarly,

leapfrog[n][m][False] and leapfrogslice[n][m][False] return the m -th endofunction and its slice in
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Listing 19. Pseudocode of the leapfrog step and its slice in NP-HMC� �
1 def leapfrog[n][m][d0](x,v):
2 if d0:
3 if m % 3 == 0 or m % 3 == 2:
4 return (x, v-ep/2*grad(U)(x)) # half momentum update
5 else: return (x+ep*v, v) # full position update
6 else:
7 if m % 3 == 0 or m % 3 == 2:
8 return (x, v+ep/2*grad(U)(x)) # inverse of half momentum update
9 else: return (x-ep*v, v) # inverse of full position update

10
11 def leapfrogslice[n][m][d0](x,v):
12 if d0:
13 if m % 3 == 0 or m % 3 == 2:
14 return (x[-1], v[-1]) # slice of half momentum update
15 else: return (x[-1]+ep*v[-1], v[-1]) # slice of full position update
16 else:
17 if m % 3 == 0 or m % 3 == 2:
18 return (x[-1], v[-1]) # slice of inverse of half momentum
19 else: return (x[-1]-ep*v[-1], v[-1]) # slice of inverse of full position� �

Listing 20. Pseudocode for NP-HMC� �
1 def NPHMC(t0):
2 d0 = coin # direction step
3 k0 = dim(t0) # initialisation step
4 x0 = t0
5 v0 = [normal]*k0 # stochastic step
6 # start of multiple step
7 n = k0
8 (x[0],v[0]) = (x0,v0)
9 for m in range(1,3L+1):

10 (x[m],v[m]) = leapfrog[n][m][d0](x[m-1],v[m-1]) # deterministic step
11 while not intersect(instance(x[m]),support(w)): # extend step
12 x[0] = x[0] + [normal]
13 v[0] = v[0] + [normal]
14 for i in range(1,m+1):
15 (y,u) = leapfrogslice[n][m][d0](x[m-1],v[m-1])
16 (x[i],v[i]) = (x[i]+y, v[i]+u)
17 n = n + 1
18 (x0,v0) = (x[0],v[0])
19 (x,v) = (x[3L],v[3L])
20 d = d0
21 # end of multiple step
22 t = intersect(instance(x),support(w))[0] # accept/reject step
23 k = dim(t)
24 return t if uniform < min{1,w(t)/w(t0) * pdfnormal[n](x)/pdfnormal[n](x0) *
25 pdfnormal[n](v)/pdfnormal[n](v0)}
26 else t0� �
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Listing 21. Pseudocode for the NP-HMC with Persistence algorithm� �
1 NPHMCwPersistent((x0,v0),d0) = PersistMom(CorruptMom((x0,v0),d0))
2
3 def HMCw(x,v): return w(x)
4
5 def CorruptMom((x0,v0),d0):
6 u = [normal(v0[i]*sqrt(1-alpha^2), alpha^2) for i in range(len(v0))]
7 return ((x0,u),d0)
8
9 def PersistMom((x0,v0),d0):

10 k0 = dim(x0) # initialisation step
11 # start of multiple step
12 n = k0
13 (x[0],v[0]) = (x0,v0)
14 for m in range(1,3L+1):
15 (x[m],v[m]) = leapfrog[n][m][d0](x[m-1],v[m-1]) # deterministic step
16 while not intersect(instance(x[m],v[m]),support(HMCw)): # extend step
17 x[0] = x[0] + [normal]
18 v[0] = v[0] + [normal]
19 for i in range(1,m+1):
20 (y,u) = leapfrogslice[n+1][i][d0](x[i-1],v[i-1])
21 (x[i],v[i]) = (x[i]+y, v[i]+u)
22 n = n + 1
23 d = not d0 # flip direction
24 # end of multiple step
25 (x,v) = intersect(instance(x[3L],v[3L]),support(HMCw))[0] # accept/reject step
26 return ((x,v), not d) if uniform < min{1, HMCw(x,v)/HMCw(x0,v0) *
27 pdfnormal[n](x[3L])/pdfnormal[n](x[0]) *
28 pdfnormal[n](v[3L])/pdfnormal[n](v[0]) }
29 else ((x0,v0), d)� �
(ϕM

ϵ/2

−1 ◦ ϕP
ϵ
−1 ◦ ϕM

ϵ/2

−1
)L.

Listing 20 gives the SPCF implementation NPHMC of the NP-HMC sampler as an instance of the Direction Multiple Step
NP-iMCMC sampler. Importantly, the expensive leapfrog[n][m] function is called once for each m ranging from 1

to 3L the lightweight leapfrogslice is called in any subsequent re-runs.

Correctness Since both ϕM
ϵ/2 and ϕP

ϵ are bijective and satisfies the projection commutation property (H3), the correctness
of NP-HMC is implied by the correctness of Direction Multiple Step NP-iMCMC sampler.

E.4. Nonparametric Hamiltonian Monte Carlo with Persistence

With the catalogue of techniques explored in App. D.3.4, novel irreversible variants of the NP-HMC algorithm can be
formed. Here we focus on the NP-HMC with Persistence algorithm which can be seen as a nonparametric extension of the
Generalised HMC algorithm (Horowitz, 1991).

E.4.1. GENERALISED HMC

Horowitz (1991) made two changes to the conventional HMC algorithm in order to generate an irreversible Markov chain
on Rn × Rn and improve its performance.

1. A “corrupted” momentum is used to move round the state space.

2. The direction is “persisted” if the proposal is accepted; otherwise it is negated.

The resulting sampler is called the Generalised HMC algorithm as it is a generalisation of the typical HMC sampler.
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As shown in (Neklyudov et al., 2020), the Generalised HMC algorithm can be presented as a composition of an iMCMC
algorithm that “corrupts” the momentum and a Persistent iMCMC algorithm that uses Hamiltonian dynamics to find a
new state with a persisting direction. We consider a similar approach in our construction of a nonparametric extension of
Generalised HMC.

E.4.2. NP-HMC WITH PERSISTENCE

State Density Let the state (x,v) ∈ Rn × Rn has density w′(x,v) := w(x) w.r.t. the normal distribution N2n. It is
clear that this density w′ is integrable (H1) and almost surely terminating (H2). By setting the parameter index map to
ιX(n) := 2n and parameter space X(n) := Rn × Rn, the state (x,v) of length 2n is a n-dimensional parameter variable.
HMCw in Listing 21 is a SPCF implementation of w′.

Corrupt Momentum Given the current state (x0,v0) ∈ Rn × Rn with direction d0 ∈ 2, a new momentum is drawn from
the distribution Nn(v0

√
1− α2, α2) for a hyper-parameter α ∈ [0, 1).

This can be presented in the NP-iMCMC format with the auxiliary variable u sampled from Nn(v0

√
1− α2, α2) and the

swap (((x0,v0), d0),u) 7→ (((x0,u), d0),v0) as the involution. Since the new state (x0,u) always have an instance in
the support of w′, and the acceptance ratio is

min
{
1,

w′(x0,u) · φ2n(x0,u) · pdf2(d0) · φn(v0 | u
√
1− α2, α2)

w′(x0,v0) · φ2n(x0,v0) · pdf2(d0) · φn(u | v0

√
1− α2, α2)

}
= 1,

the extend step (Step 3) and the accept/reject step (Step 4) of the NP-iMCMC sampler can both be skipped. This results in a
sampler that has the SPCF implementation CorruptMom in Listing 21.

Persist Momentum We consider the Persistent Multiple Step NP-iMCMC algorithm (App. D.3.7) with the target density
w′ as follows.

Given a k0-dimensional parameter (x0,v0) ∈ X(n) := Rn × Rn and direction d0 ∈ 2, a dummy auxiliary variable
u ∈ Y(n) := Rn is sampled from K(n)((x0,v0), ·) := Nn to form an initial state ((x0,v0),u). Depending on the direction
d0, either

(
(ϕM

ϵ/2× idRn) ◦ (ϕP
ϵ × idRn) ◦ (ϕM

ϵ/2× idRn)
)L

or its inverse is performed on ((x0,v0),u), one update at a time,
extending the dimension as required. Say the initial state is extended to a n-dimensional ((x∗

0,v
∗
0),u

∗) and is traversed to
the n-dimensional new state ((x∗,v∗),u∗). Then, the instance (x,v) ∈ Supp(w′) of the n-dimensional parameter (x∗,v∗)
is returned alongside the direction variable d0 with probability

min

{
1;

w′(x,v) · φn(x
∗) · φn(v

∗)

w′(x0,v0) · φn(x∗
0) · φn(v∗

0)

}
.

Note that the auxiliary variable u has no effect on the sampler. Hence, Listing 21 gives a SPCF implementation
PersistMom where the stochastic step (Step 2) is skipped.

NP-HMC with Persistence Composing the samplers which “corrupts” and persists the momentum gives us the NP-
HMC with Persistence algorithm, which is an nonparametric extension of Generalised HMC. Listing 21 gives the SPCF
implementation NPHMCwPersistent by composing CorruptMom and PersistMom .

E.5. Nonparametric Look Ahead Hamiltonian Monte Carlo

Last but not least, we extend the Look Ahead HMC algorithm (Sohl-Dickstein et al., 2014), which is equivalent to the Extra
Chance Generalised HMC algorithm (Campos & Sanz-Serna, 2015).

E.5.1. LOOK AHEAD HMC

The Look Ahead HMC sampler modifies the Generalised HMC algorithm by performing extra leapfrog steps when the
proposal state is rejected. This has the effect of increasing the acceptance rate for each proposal.

To see Look Ahead HMC as an instance of Persistent iMCMC, we consider the involution Φ on Rn × Rn × [0, 1)× 2 given
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Listing 22. Pseudocode for the NP Look Ahead HMC algorithm� �
1 NPLookAheadHMC((x0,v0),d0) = ExtraLeapfrog(CorruptMom((x0,v0),d0)))
2
3 def ExtraLeapfrog((x0,v0),d0):
4 k0 = dim(x0) # initialisation step
5 u = uniform # stochastic step
6 # start of multiple step
7 n = k0
8 m = 0
9 (x[m],v[m]) = (x0,v0)

10
11 stop = False
12 while not stop:
13 j = 1
14 M = j*3*L
15 # perform a set of leapfrog steps, i.e. to compute (x[i],v[i]) for i in range(m,M)
16 while m < M+1:
17 (x[m],v[m]) = leapfrog[n][m][d0](x[m-1],v[m-1]) # deterministic step
18 while not intersect(instance(x[m],v[m]),support(HMCw)): # extend step
19 x[0] = x[0] + [normal]
20 v[0] = v[0] + [normal]
21 for i in range(1,m+1):
22 (y,u) = leapfrogslice[n+1][i][d0](x[i-1],v[i-1])
23 (x[i],v[i]) = (x[i]+y, v[i]+u)
24 n = n + 1
25 m = m + 1
26 (x,v) = intersect(instance(x[M],v[M]),support(HMCw))[0]
27 if u > min{1,HMCw(x,v)/HMCw(x0,v0) *
28 pdfnormal[n](x[M])/pdfnormal[n](x[0]) *
29 pdfnormal[n](v[M])/pdfnormal[n](v[0]) }:
30 if j <= J:
31 # perform an extra set of leapfrog steps
32 j = j + 1
33 else:
34 # no leapfrog steps is performed
35 (x,v) = (x0,v0)
36 stop = True
37 d = d0
38 else:
39 # enough leapfrog steps are performed
40 stop = True
41 d = not d0
42 # end of multiple step
43 return ((x,v), not d)� �



Nonparametric Involutive Markov Chain Monte Carlo

0 σ1 σ3 σ2 σ4 1

(L1(x,v), u
σ1
,F)

(L2(x,v), u
σ2
,F)

(L4(x,v), u
σ4
,F)

(L0(x,v), u
σ0
,F)

(L3(x,v), u
σ3
,F)

Figure 10. Result of Φ(x,v, u,T) for varying u ∈ [0, 1].

by

Φ(x,v, u,T) :=

(Lj(x,v),
u

σj
,F) if max{σi | i < j} ≤ u < min{1, σj}

(x,v, u,T) if max{σj | j ≤ J} ≤ u

Φ(x,v, u,F) :=

(L−j(x,v),
u

σ′
j

,T) if max{σ′
i | i < j} ≤ u < min{1, σ′

j}

(x,v, u,F) if max{σ′
j | j ≤ J} ≤ u

where

σj :=
ζ(Lj(x,v))

ζ(x,v)
, σ′

j :=
ζ(L−j(x,v))

ζ(x,v)
, L−j := (L−1)j

and ζ is the state density in HMC.

Note that in the involution, u determines how many sets (j) of leapfrog steps are to be performed. Say the direction is T. If
the values of min{1, σj} for j = 1, . . . , J are marked on the unit interval [0, 1], then the probability that Lj is performed
can be represented by the distance between min{1, σj} and the highest of σi for i < j, if it is non-negative. App. E.5.1
gives an example of the result of Φ(x,v, u,T) for varying u ∈ [0, 1].

The Look Ahead HMC sampler can be formulated as a Persistent iMCMC sampler with the auxiliary kernel K((x,v), ·) :=
U [0, 1) and above involution Φ. Note that the sampler always accept the proposal since for u ∈ [max{σi | i <
j},min{1, σj}) with j ∈ {1, . . . , J}, the acceptance ratio is

min{1, ζ(L
j(x,v))

ζ(x,v)
· |det∇Φ(x,v, u,T)|} = min{1, σj · |(det∇Lj(x,v)) · 1

σj
|} = 1

and for u ∈ [max{σj | j ≤ J}, 1], the acceptance ratio is also 1. A similar argument can be made when the direction is F.

E.5.2. NP LOOK AHEAD HMC

Extra Leapfrog Similar to the NP-HMC with Persistence, we consider the Persistent Multiple Step iMCMC algorithm
(App. D.3.7) that applies a random number of leapfrog function (or its inverse) to the current state with the target density
w′(x,v) := w(x).

Given a k0-dimensional parameter (x0,v0) ∈ Rn × Rn and direction d0 ∈ 2, a random variable u ∈ [0, 1) and a dummy
auxiliary variable u0 ∈ Rn are sampled from the uniform distribution U(0, 1) and K(n)((x0,v0), ·) := Nn respectively to
form an initial state ((x0,v0), (u,u0)).

If the direction d0 is T and u ∈ [max{σi | i < j},min{1, σj}) for some j > 0 where

σj :=
max{w′(t,u) | t ∈ instance(Lj(x,v))} · φ2n(L

j(x,v))

max{w′(t,u) | t ∈ instance((x,v))} · φ2n(x,v)
,

leapfrog steps (idRn×Rn × ( 1
σj
) × idRn) ◦ (Lj × id[0,1)×Rn) are performed on ((x0,v0), (u,u0)), one update at a time,

extending the dimension as required with a flipped direction F. Otherwise, u ≥ max{σj | j ≤ J} and no leapfrog steps is
performed; ((x0,v0), (u,u0)) is returned with the direction T remains unchanged. The treatment when d0 is F is similar.



Nonparametric Involutive Markov Chain Monte Carlo

Say the initial state with direction d0 is extended to a n-dimensional ((x∗
0,v

∗
0), (u,u

∗
0)) and is traversed to the n-dimensional

new state ((x∗,v∗), (u∗,u∗)) with direction d. The instance (x,v) ∈ Supp(w′) of the n-dimensional parameter (x∗,v∗)
is returned alongside a flipped direction not d with probability

min

{
1;

w′(x,v) · φ2n(x
∗,v∗) · pdfU(0,1)(u

∗) · φn(u
∗)

w′(x0,v0) · φ2n(x∗
0,v

∗
0) · pdfU(0,1)(u) · φn(u∗

0)
· | 1
σj
| · |det∇Lj(x0,v0)|

}
= 1

if j > 0. Otherwise (j = 0), the acceptance ratio is also 1.

Note that the auxiliary variable u0 has no effect on the sampler. Hence, Listing 22 gives a SPCF implementation
ExtraLeapfrog where the sampling of the auxiliary variable u0 is skipped.

NP Look Ahead HMC Combining ExtraLeapfrog with CorruptMom , the NPLookAheadHMC function in List-
ing 22 implements the NP Look Ahead HMC sampler.


