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Abstract
We propose a new method to approximate the posterior dis-

tribution of probabilistic programs by means of computing

guaranteed bounds. The starting point of our work is an

interval-based trace semantics for a recursive, higher-order

probabilistic programming language with continuous distri-

butions. Taking the form of (super-/subadditive) measures,

these lower/upper bounds are non-stochastic and provably

correct: using the semantics, we prove that the actual poste-

rior of a given program is sandwiched between the lower and

upper bounds (soundness); moreover, the bounds converge

to the posterior (completeness). As a practical and sound

approximation, we introduce a weight-aware interval type

system, which automatically infers interval bounds on not

just the return value but also the weight of program execu-

tions, simultaneously. We have built a tool implementation,

called GuBPI, which automatically computes these posterior

lower/upper bounds. Our evaluation on examples from the

literature shows that the bounds are useful, and can even be

used to recognise wrong outputs from stochastic posterior

inference procedures.

CCS Concepts: • Mathematics of computing → Proba-
bilistic inference problems; • Theory of computation
→ Program analysis; • Software and its engineering →
Formal methods.
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1 Introduction
Probabilistic programming is a rapidly developing discipline

at the interface of programming and Bayesian statistics [32,

33, 62]. The idea is to express probabilistic models (incor-

porating the prior distributions) and the observed data as

programs, and to use a general-purpose Bayesian inference

engine, which acts directly on these programs, to find the

posterior distribution given the observations.

Some of the most influential probabilistic programming

languages (PPLs) used in practice are universal (i.e. the under-
lying language is Turing-complete); e.g. Church [31], Angli-

can [61], Gen [18], Pyro [5], and Turing [25]. Using stochastic

branching, recursion, and higher-order features, universal

PPLs can express arbitrarily complex models. For instance,

these language constructs can be used to incorporate proba-

bilistic context free grammars [43], statistical phylogenetics

[52], and even physics simulations [3] into probabilistic mod-

els. However, expressivity of the PPL comes at the cost of

complicating the posterior inference. Consider, for example,

the following problem from [41, 42].

Example 1.1 (Pedestrian). A pedestrian has gotten lost on

a long road and only knows that they are a random distance

between 0 and 3 km from their home. They repeatedly walk a

uniform random distance of at most 1 km in either direction,

until they find their home. When they arrive, a step counter

tells them that they have traveled a distance of 1.1 km in total.

Assuming that the measured distance is normally distributed

around the true distance with standard deviation 0.1 km,

what is the posterior distribution of the starting point? We

can model this with a probabilistic program:

let start = 3 × sample uniform(0, 1) in
letrec walk 𝑥 = if 𝑥 ≤ 0 then 0 else

let step = sample uniform(0, 1) in
step + walk

(
(𝑥 + step) ⊕0.5 (𝑥 − step)

)
let distance = walk start in
observe distance from Normal(1.1, 0.1);
start

Here sample uniform(𝑎, 𝑏) samples a uniformly distributed

value in [𝑎, 𝑏], ⊕0.5 is probabilistic branching, and observe
𝑀 from 𝐷 observes the value of𝑀 from distribution 𝐷 .

Example 1.1 is a challenging model for inference algo-

rithms in several regards: not only does the program use
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Figure 1. Histogram of samples from the posterior distri-

bution of Example 1.1 and wrong samples produced by the

probabilistic programming system Pyro.

stochastic branching and recursion, but the number of ran-

dom variables generated is unbounded – it’s nonparametric
[29, 37, 42]. To approximate the posterior distribution of

the program, we apply two standard inference algorithms:

likelihood-weighted importance sampling (IS), a simple al-

gorithm that works well on low-dimensional models with

few observations [49]; and Hamiltonian Monte Carlo (HMC)

[21], a successful MCMC algorithm that uses gradient infor-

mation to efficiently explore the parameter space of high-

dimensional models. Figure 1 shows the results of the two

inference methods as implemented in Anglican [61] (for IS)

and Pyro [5] (for HMC): they clearly disagree! But how is

the user supposed to know which (if any) of the two results

is correct?

Note that exact inference methods (i.e. methods that try

to compute a closed-form solution of the posterior inference

problem using computer algebra and other forms of symbolic

computation) such as PSI [26, 27], Hakaru [47], Dice [38],

and SPPL [55] are only applicable to non-recursive models,

and so they don’t work for Example 1.1.

1.1 Guaranteed Bounds
The above example illustrates central problems with both

approximate stochastic and exact inference methods. For

approximate methods, there are no guarantees for the results

they output after a finite amount of time, leading to unclear

inference results (as seen in Fig. 1).
1
For exact methods, the

symbolic engine may fail to find a closed-form description

of the posterior distribution and, more importantly, they are

1
Take MCMC sampling algorithms. Even though the Markov chain will

eventually converge to the target distribution, we do not know how long to

iterate the chain to ensure convergence [49, 53]. Likewise for variational

inference [64]: given a variational family, there is no guarantee that a

given value for the KL-divergence (from the approximating to the posterior

distribution) is attainable by the minimising distribution.

only applicable to very restricted classes of programs (most

notably, non-recursive models).

Instead of computing approximate or exact results, this

work is concerned with computing guaranteed bounds on the
posterior distribution of a probabilistic program. Concretely,

given a probabilistic program 𝑃 and a measurable set𝑈 ⊆ R
(given as an interval), we infer upper and lower bounds on

J𝑃K(𝑈 ) (formally defined in Section 2), i.e. the posterior prob-

ability of 𝑃 on 𝑈 .
2
Such bounds provide a ground truth to

compare approximate inference results with: if the approx-

imate results violate the bounds, the inference algorithm

has not converged yet or is even ill-suited to the program

in question. Crucially, our method is applicable to arbitrary

(and in particular recursive) programs of a universal PPL. For

Example 1.1, the bounds computed by our method (which

we give in Section 7) are tight enough to separate the IS and

HMC output. In this case, our method infers that the results

given by HMC are wrong (i.e. violate the guaranteed bounds)

whereas the IS results are plausible (i.e. lie within the guar-

anteed bounds). To the best of our knowledge, no existing

methods can provide such definite answers for programs of

a universal PPL.

1.2 Contributions
The starting point of our work is an interval-based opera-

tional semantics [4]. In our semantics, we evaluate a program

on interval traces (i.e. sequences of intervals of reals with
endpoints between 0 and 1) to approximate the outcomes of

sampling, and use interval arithmetic [19] to approximate

numerical operations (Section 3). Our semantics is sound in

the sense that any (compatible and exhaustive) set of inter-

val traces yields lower and upper bounds on the posterior

distribution of a program. These lower/upper bounds are

themselves super-/subadditive measures. Moreover, under

mild conditions (mostly restrictions on primitive operations),

our semantics is also complete, i.e. for any 𝜖 > 0 there ex-

ists a countable set of interval traces that provides 𝜖-tight

bounds on the posterior. Our proofs hinge on a combination

of stochastic symbolic execution and the convergence of

Riemann sums, providing a natural correspondence between

our interval trace semantics and the theory of (Riemann)

integration (Section 4).

Based on our interval trace semantics, we present a prac-

tical algorithm to automate the computation of guaranteed

bounds. It employs an interval type system (together with

constraint-based type inference) that bounds both the value

of an expression in a refinement-type fashion and the score

weight of any evaluation thereof. The (interval) bounds in-

ferred by our type system fit naturally in the domain of

our semantics. This enables a sound approximation of the

2
By repeated application of our method on a discretisation of the domain

we can compute histogram-like bounds.
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behaviour of a program with finitely many interval traces

(Section 5).

We implemented our approach in a tool called GuBPI
3

(Guaranteed Bounds for Posterior Inference), described in

Section 6, and evaluate it on a suite of benchmark programs

from the literature. We find that the bounds computed by

GuBPI are competitive in many cases where the posterior

could already be inferred exactly. Moreover, GuBPI’s bounds

are useful (in the sense that they are precise enough to rule

out erroneous approximate results as in Fig. 1, for instance)

for recursive models that could not be handled rigorously by

any method before (Section 7).

1.3 Scope and Limitations
The contributions of this paper are of both theoretical and

practical interest. On the theoretical side, our novel seman-

tics underpins a sound and deterministic method to compute

guaranteed bounds on program denotations. As shown by

our completeness theorem, this analysis is applicable—in the

sense that it computes arbitrarily tight bounds—to a very

broad class of programs. On the practical side, our analyser

GuBPI implements (an optimised version of) our semantics.

As is usual for exact/guaranteed
4
methods, our semantics

considers an exponential number of program paths, and par-

titions each sampled value into a finite number of interval

approximations. Consequently, GuBPI generally struggles

with high-dimensional models. We believe GuBPI to be most

useful for unit-testing of implementations of Bayesian infer-

ence algorithms such as Example 1.1, or to compute results

on (recursive) programs when non-stochastic, guaranteed

bounds are needed.

2 Background
2.1 Basic Probability Theory and Notation
We assume familiarity with basic probability theory, and

refer to [51] for details. Here we just fix the notation. Amea-
surable space is a pair (Ω, ΣΩ) where Ω is a set (of outcomes)

and ΣΩ ⊆ 2
Ω
is a 𝜎-algebra defining the measurable subsets

ofΩ. Ameasure on (Ω, ΣΩ) is a function 𝜇 : ΣΩ → R≥0∪{∞}
that satisfies 𝜇 (∅) = 0 and is 𝜎-additive. For R𝑛 , we write
ΣR𝑛 for the Borel 𝜎-algebra and 𝜆𝑛 for the Lebesgue mea-

sure on (R𝑛, ΣR𝑛 ). The Lebesgue integral of a measurable

function 𝑓 with respect to a measure 𝜇 is written

∫
𝑓 d𝜇

or

∫
𝑓 (𝑥) 𝜇 (d𝑥). Given a predicate 𝜓 on Ω, we define the

Iverson brackets [𝜓 ] : Ω → R by mapping all elements that

satisfy𝜓 to 1 and all others to 0. For 𝐴 ∈ ΣΩ we define the

bounded integral

∫
𝐴
𝑓 d𝜇 :=

∫
𝑓 (𝑥) · [𝑥 ∈ 𝐴]𝜇 (d𝑥).

3
GuBPI (pronounced “guppy”) is available at gubpi-tool.github.io.

4
By “exact/guaranteed methods”, we mean inference algorithms that com-

pute deterministic (non-stochastic) results about the mathematical denota-

tion of a program. In particular, they are correct with probability 1, contrary

to stochastic methods.

((𝜆𝑥.𝑀)𝑉 , 𝒔,𝑤) → (𝑀 [𝑉 /𝑥], 𝒔,𝑤) (sample, 𝑟 𝒔,𝑤) → (𝑟, 𝒔,𝑤)

((𝜇𝜑𝑥 . 𝑀)𝑉 , 𝒔,𝑤) → (𝑀 [𝑉 /𝑥, (𝜇𝜑𝑥 . 𝑀)/𝜑], 𝒔,𝑤)

(𝑓 (𝑟1, . . . , 𝑟 |𝑓 |), 𝒔,𝑤) → (𝑓 (𝑟1, . . . , 𝑟 |𝑓 |), 𝒔,𝑤)

𝑟 ≤ 0

(if (𝑟, 𝑁 , 𝑃), 𝒔,𝑤) → (𝑁, 𝒔,𝑤)
𝑟 > 0

(if (𝑟, 𝑁 , 𝑃), 𝒔,𝑤) → (𝑃, 𝒔,𝑤)
𝑟 ≥ 0

(score(𝑟 ), 𝒔,𝑤) → (𝑟, 𝒔,𝑤 · 𝑟 )
(𝑅, 𝒔,𝑤) → (𝑀, 𝒔 ′,𝑤 ′)

(𝐸 [𝑅], 𝒔,𝑤) → (𝐸 [𝑀], 𝒔 ′,𝑤 ′)

Figure 2. Standard (CbV) reduction rules for SPCF (→).

2.2 Statistical PCF (SPCF)
As our probabilistic programming language of study, we use

statistical PCF (SPCF) [41], a typed variant of [7]. SPCF in-

cludes primitive operations which are measurable functions

𝑓 : R |𝑓 | → R, where |𝑓 | ≥ 0 denotes the arity of the function.

Values and terms of SPCF are defined as follows:

𝑉 := 𝑥 | 𝑟 | 𝜆𝑥 .𝑀 | 𝜇𝜑𝑥 . 𝑀
𝑀, 𝑁, 𝑃 := 𝑉 | 𝑀𝑁 | if (𝑀, 𝑁, 𝑃) | 𝑓 (𝑀1, . . . , 𝑀 |𝑓 |)

| sample | score(𝑀)

where 𝑥 and 𝜑 are variables, 𝑓 is a primitive operation, and

𝑟 a constant with 𝑟 ∈ R. Note that we write 𝜇𝜑𝑥 . 𝑀 instead

of Y(𝜆𝜑𝑥.𝑀) for the fixpoint construct. The branching con-
struct is if (𝑀, 𝑁, 𝑃), which evaluates to 𝑁 if 𝑀 ≤ 0 and

𝑃 otherwise. In SPCF, sample draws a random value from

the uniform distribution on [0, 1], and score(𝑀) weights
the current execution with the value of 𝑀 . Samples from

a different real-valued distribution 𝐷 can be obtained by

applying the inverse of the cumulative distribution func-

tion for 𝐷 to a uniform sample [54]. Most PPLs feature an

observe statement instead of manipulating the likelihood

weight directly with score, but they are equally expressive

[59].
5
As usual, we write let𝑥 = 𝑀 in𝑁 for (𝜆𝑥 .𝑁 )𝑀 ,𝑀 ;𝑁

for let _ = 𝑀 in𝑁 and𝑀 ⊕𝑝 𝑁 for if (sample− 𝑝,𝑀, 𝑁 ). The
type system of our language is as expected, with simple types

being generated by 𝛼, 𝛽 := R | 𝛼 → 𝛽 . Selected rules are

given below:

Γ ⊢ sample : R
Γ ⊢ 𝑀 : R

Γ ⊢ score(𝑀) : R
Γ, 𝜑 : 𝛼 → 𝛽, 𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ 𝜇
𝜑
𝑥 . 𝑀 : 𝛼 → 𝛽

{Γ ⊢ 𝑀𝑖 : R} |𝑓 |𝑖=1

Γ ⊢ 𝑓 (𝑀1, . . . , 𝑀 |𝑓 |) : R

5
In Bayesian terms, an observe statement multiplies the likelihood func-

tion by the probability (density) of the observation [33] (as we have used in

Example 1.1). Scoring makes this explicit by keeping a weight for each pro-

gram execution [7]. Observing a value 𝑣 from a distribution 𝐷 then simply

multiplies the current weight by pdf𝐷 (𝑣) where pdf𝐷 is the probability

density function of 𝐷 (for continuous distributions) or the probability mass

function of 𝐷 (for discrete distributions).

https://gubpi-tool.github.io/
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2.3 Trace Semantics
Following [7], we endow SPCF with a trace-based opera-

tional semantics. We evaluate a probabilistic program 𝑃 on

a fixed trace 𝒔 = ⟨𝑟1, . . . , 𝑟𝑛⟩ ∈ T :=
⋃

𝑛∈N [0, 1]𝑛 , which
predetermines the probabilistic choices made during the eval-

uation. Our semantics therefore operates on configurations

of the form (𝑀, 𝒔,𝑤) where𝑀 is an SPCF term, 𝒔 is a trace
and𝑤 ∈ R≥0 a weight. The call-by-value (CbV) reduction is

given by the rules in Fig. 2, where 𝐸 [·] denotes a CbV eval-

uation context. The definition is standard [4, 7, 41]. Given

a program ⊢ 𝑃 : R, we call a trace 𝒔 terminating just if

(𝑃, 𝒔, 1) →∗ (𝑉 , ⟨⟩,𝑤) for some value 𝑉 and weight𝑤 , i.e. if

the samples drawn are as specified by 𝒔, the program 𝑃 ter-

minates. Note that we require the trace 𝒔 to be completely

used up. As 𝑃 is of type R we can assume that 𝑉 = 𝑟 for

some 𝑟 ∈ R. Each terminating trace 𝒔 therefore uniquely

determines the returned value 𝑟 where 𝑟 =: val𝑃 (𝒔) ∈ R,
and the weight 𝑤 =: wt𝑃 (𝒔) ∈ R≥0, of the execution. For a
nonterminating trace 𝒔, val𝑃 (𝒔) is undefined andwt𝑃 (𝒔) := 0.

Example 2.1. Consider Example 1.1. On the trace 𝒔 = ⟨0.1,
0.2, 0.4, 0.7, 0.8⟩ ∈ [0, 1]5 ⊆ T, the pedestrian walks 0.2 away

from their home (taking the left branch of ⊕0.5 as 0.4 ≤ 0.5)

and 0.7 towards their home (as 0.8 > 0.5), hence:

val𝑃 (𝒔) = 3 × 0.1 = 0.3, wt𝑃 (𝒔) = pdf
Normal(1.1,0.1) (0.9).

In order to do measure theory, we need to turn our set of

traces into a measurable space. The trace space T is equipped
with the 𝜎-algebra ΣT := {⋃𝑛∈N𝑈𝑛 | 𝑈𝑛 ∈ Σ [0,1]𝑛 } where
Σ [0,1]𝑛 is the Borel 𝜎-algebra on [0, 1]𝑛 . We define a measure

𝜇T by 𝜇T (𝑈 ) := ∑
𝑛∈N 𝜆𝑛 (𝑈 ∩ [0, 1]𝑛), as in [7].

We can now define the semantics of an SPCF program

⊢ 𝑃 : R by using the weight and returned value of (executions

of 𝑃 determined by) individual traces. Given𝑈 ∈ ΣR, we need
to define the likelihood of 𝑃 evaluating to a value in𝑈 . To this

end, we set val−1𝑃 (𝑈 ) := {𝒔 ∈ T | (𝑃, 𝒔, 1) →∗ (𝑟, ⟨⟩,𝑤), 𝑟 ∈
𝑈 }, i.e. the set of traces on which the program 𝑃 reduces to a

value in 𝑈 . As shown in [7, Lem. 9], val−1𝑃 (𝑈 ) is measurable.

Thus, we can define (cf. [7, 41])

J𝑃K(𝑈 ) :=
∫
val−1𝑃 (𝑈 ) wt𝑃 (𝒔) 𝜇T (d𝒔).

That is, the integral takes all traces 𝒔 on which 𝑃 evaluates

to a value in 𝑈 , weighting each 𝒔 with the weight wt𝑃 (𝒔) of
the corresponding execution. A program 𝑃 is called almost
surely terminating (AST) if it terminates with probability

1, i.e. 𝜇T (val−1𝑃 (R)) = 1. This is a necessary assumption for

approximate inference algorithms (since they execute the

program). See [7] for a more in-depth discussion of this

(standard) sampling-style semantics.

Normalizing constant and integrability. In Bayesian

statistics, one is usually interested in the normalised pos-

terior, which is a conditional probability distribution. We

obtain the normalised denotation as posterior𝑃 :=
J𝑃K
𝑍𝑃

where

𝑍𝑃 := J𝑃K(R) is the normalising constant. We call 𝑃 inte-
grable if 0 < 𝑍𝑃 < ∞. The bounds computed in this paper

(on the unnormalised denotation J𝑃K) allow us to compute

bounds on the normalizing constant 𝑍𝑃 , and thereby also on

the normalised denotation. All bounds reported in this paper

(in particular in Section 7) refer to the normalised denotation.

3 Interval Trace Semantics
In order to obtain guaranteed bounds on the distribution

denotation J𝑃K (and also on posterior𝑃 ) of a program 𝑃 , we

present an interval-based semantics. In our semantics, we

approximate the outcomes of sample with intervals and han-

dle arithmetic operations by means of interval arithmetic

(which is similar to the approach by Beutner and Ong [4]

in the context of termination analysis). Our semantics en-

ables us to reason about the denotation of a program without
considering the uncountable space of traces explicitly.

3.1 Interval Arithmetic
For our purposes, an interval has the form [𝑎, 𝑏] which
denotes the set {𝑥 ∈ R | 𝑎 ≤ 𝑥 ≤ 𝑏}, where 𝑎 ∈ R ∪ {−∞},
𝑏 ∈ R ∪ {∞}, and 𝑎 ≤ 𝑏. For consistency, we write [0,∞]
instead of the more typical [0,∞). For 𝑋 ⊆ R∪ {−∞,∞}, we
denote by I𝑋 the set of intervals with endpoints in 𝑋 , and

simply write I for IR∪{−∞,∞} . An 𝑛-dimensional box is the

Cartesian product of 𝑛 intervals.

We can lift functions on real numbers to intervals as fol-

lows: for each 𝑓 : R𝑛 → R we define 𝑓 I : I𝑛 → I by

𝑓 I ( [𝑎1, 𝑏1], . . . , [𝑎𝑛, 𝑏𝑛]) := [inf 𝐹, sup 𝐹 ]

where 𝐹 := 𝑓 ( [𝑎1, 𝑏1], . . . , [𝑎𝑛, 𝑏𝑛]). For common functions

like +, −, ×, | · |, min, max, and monotonically increasing

or decreasing functions 𝑓 : R → R, their interval-lifted
counterparts can easily be computed, from the values of the

original function on just the endpoints of the input interval.

For example, addition lifts to [𝑎1, 𝑏1]+I [𝑎2, 𝑏2] = [𝑎1+𝑎2, 𝑏1+
𝑏2]; similarly for multiplication ×I.

3.2 Interval Traces and Interval SPCF
In our interval interpretation, probabilistic programs are run

on interval traces. An interval trace, ⟨𝐼1, . . . , 𝐼𝑛⟩ ∈ TI :=⋃
𝑛∈N (I[0,1])𝑛 , is a finite sequence of intervals 𝐼1, . . . , 𝐼𝑛 , each

with endpoints between 0 and 1. To distinguish ordinary

traces 𝒔 ∈ T from interval traces 𝒕 ∈ TI, we call the former

concrete traces.
We define the refinement relation ⊳ between concrete

and interval traces as follows: for 𝒔 = ⟨𝑟1, . . . , 𝑟𝑛⟩ ∈ T and

𝒕 = ⟨𝐼1, . . . , 𝐼𝑚⟩ ∈ TI, we define 𝒔 ⊳ 𝒕 just if 𝑛 = 𝑚 and

for all 𝑖 , 𝑟𝑖 ∈ 𝐼𝑖 . For each interval trace 𝒕 , we denote by

L𝒕M := {𝒔 ∈ T | 𝒔 ⊳ 𝒕} the set of all refinements of 𝒕 .
To define a reduction of a term on an interval trace, we

extend SPCF with interval literals [𝑎, 𝑏], which replace the

literals 𝑟 but are still considered values of type R. In fact, 𝑟
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((𝜆𝑥 .𝑀)𝑉 , 𝒕,𝑤) →I (𝑀 [𝑉 /𝑥], 𝒕,𝑤) (sample, 𝐼 𝒕,𝑤) →I (𝐼 , 𝒕,𝑤)

((𝜇𝜑𝑥 . 𝑀)𝑉 , 𝒕,𝑤) →I (𝑀 [𝑉 /𝑥, (𝜇𝜑𝑥 . 𝑀)/𝜑], 𝒕,𝑤)
𝑏 ≤ 0

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑁, 𝒕,𝑤)
𝑎 > 0

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑃, 𝒕,𝑤)

(𝑓 (𝐼1, . . . , 𝐼 |𝑓 |), 𝒕,𝑤) →I (𝑓 I (𝐼1, . . . , 𝐼 |𝑓 |), 𝒕,𝑤)

𝑎 ≥ 0

(score( [𝑎, 𝑏]), 𝒕,𝑤) →I ( [𝑎, 𝑏], 𝒕,𝑤 ×I [𝑎, 𝑏])

(𝑅, 𝒕,𝑤) →I (𝑀, 𝒕 ′,𝑤 ′)
(𝐸 [𝑅], 𝒕,𝑤) →I (𝐸 [𝑀], 𝒕 ′,𝑤 ′)

Figure 3. Interval reduction rules for (interval) SPCF (→I).

can be read as an abbreviation for [𝑟, 𝑟 ]. We call such terms

interval terms, and the resulting language Interval SPCF.

Reduction. The interval-based reduction→I now oper-

ates on configurations (𝑀, 𝒕,𝑤) of interval terms𝑀 , interval

traces 𝒕 ∈ TI, and interval weights 𝑤 ∈ IR≥0∪{∞} . The re-

dexes and evaluation contexts of SPCF extend naturally to

interval terms. The reduction rules are given in Fig. 3.
6

Given a program ⊢ 𝑃 : R, the reduction relation →I al-
lows us to define the interval weight function (wtI

𝑃
: TI →

IR≥0∪{∞}) and interval value function (valI𝑃 : TI → I) by:

wtI𝑃 (𝒕) :=
{
𝑤 if (𝑃, 𝒕, 1) →∗

I (𝐼 , ⟨⟩,𝑤)
[0,∞] otherwise,

valI𝑃 (𝒕) :=
{
𝐼 if (𝑃, 𝒕, 1) →∗

I (𝐼 , ⟨⟩,𝑤)
[−∞,∞] otherwise.

It is not difficult to prove the following relationship be-

tween standard and interval reduction.

Lemma 3.1. Let ⊢ 𝑃 : R be a program. For any interval trace
𝒕 and concrete trace 𝒔 ⊳ 𝒕 , we have wt𝑃 (𝒔) ∈ wtI

𝑃
(𝒕) and

val𝑃 (𝒔) ∈ valI𝑃 (𝒕) (provided val𝑃 (𝒔) is defined).

3.3 Bounds from Interval Traces
Lower bounds. How can we use this interval trace seman-

tics to obtain lower bounds on J𝑃K? We need a few defini-

tions. Two intervals [𝑎1, 𝑏1], [𝑎2, 𝑏2] ∈ I are called almost
disjoint if 𝑏1 ≤ 𝑎2 or 𝑏2 ≤ 𝑎1. Interval traces ⟨𝐼1, . . . , 𝐼𝑚⟩ and
⟨𝐽1, . . . , 𝐽𝑛⟩ ∈ TI are called compatible if there is an index

𝑖 ∈ {1, . . . ,min(𝑚,𝑛)} such that 𝐼𝑖 and 𝐽𝑖 are almost disjoint.

6
For conditionals, the interval bound is not always precise enough to decide

which branch to take, so the reduction can get stuck if 𝑎 ≤ 0 < 𝑏. We could

include additional rules to overapproximate the branching behaviour (see

Appendix A.4). But the rules given here simplify the presentation and are

sufficient to prove soundness and completeness.

A set of interval traces is called compatible if its elements are

pairwise compatible. We define the volume of an interval

trace 𝒕 = ⟨[𝑎1, 𝑏1], . . . , [𝑎𝑛, 𝑏𝑛]⟩ as vol(𝒕) :=
∏𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖 ).
Let T ⊆ TI be a countable and compatible set of interval

traces. Define the lower bound on J𝑃K by

lowerBdT
𝑃 (𝑈 ) :=

∑
𝒕 ∈T

vol(𝒕) · (minwtI𝑃 (𝒕)) ·
[
valI𝑃 (𝒕) ⊆ 𝑈

]
for 𝑈 ∈ ΣR. That is, we sum over each interval trace in

T whose value is guaranteed to be in 𝑈 , weighted by its

volume and the lower bound of its weight interval. Note

that, in general, lowerBdT
𝑃
is not a measure, but merely a

superadditive measure.7

Upper bounds. For upper bounds, we require the notion
of a set of interval traces being exhaustive, which is easiest

to express in terms of infinite traces. Let T∞ := [0, 1]𝜔 be

the set of infinite traces. Every interval trace 𝒕 covers the set
of infinite traces with a prefix contained in 𝒕 , i.e. cover (𝒕) :=
L𝒕M × T∞ (where the Cartesian product × can be viewed

as trace concatenation). A countable set of (finite) interval

traces T ⊆ TI is called exhaustive if
⋃

𝒕 ∈T cover (𝒕) covers
almost all of T∞, i.e. 𝜇T∞ (T∞ \⋃

𝒕 ∈T cover (𝒕)) = 0.
8
Phrased

differently, almost all concrete traces must have a finite prefix

that is contained in some interval trace in T . Therefore, the

analysis in the interval semantics on T covers the behaviour

on almost all concrete traces (in the original semantics).

Example 3.1. (i) The singleton set {⟨[0, 1], [0, 0.6]⟩} is not
exhaustive as, e.g. all infinite traces ⟨𝑟1, 𝑟2, . . . ⟩ with 𝑟2 > 0.6

are not covered. (ii) The set {⟨[0, 0.6]⟩, ⟨[0.3, 1]⟩} is exhaus-
tive, but not compatible. (iii) Define T1 := {⟨[ 1

2
, 1] ...𝑛, [0, 1

3
]⟩ |

𝑛 ∈ N} and T2 := {⟨[ 1
2
, 1] ...𝑛, [0, 1

2
]⟩ | 𝑛 ∈ N} where 𝑥 ...𝑛 de-

notes 𝑛-fold repetition of 𝑥 . T1 is compatible but not exhaus-

tive. For example, it doesn’t cover the set [ 1
2
, 1] × ( 1

3
, 1
2
) ×T∞,

i.e. all traces ⟨𝑟1, 𝑟2, . . . ⟩ where 𝑟1 ∈ [ 1
2
, 1] and 𝑟2 ∈ ( 1

3
, 1
2
). T2

is compatible and exhaustive (the set of non-covered traces

( 1
2
, 1]𝜔 has measure 0).

Let T ⊆ TI be a countable and exhaustive set of interval

traces. Define the upper bound on J𝑃K by

upperBdT
𝑃 (𝑈 ) :=

∑
𝒕 ∈T

vol(𝒕) · (supwtI𝑃 (𝒕)) ·
[
valI𝑃 (𝒕) ∩𝑈 ≠ ∅

]
for 𝑈 ∈ ΣR. That is, we sum over each interval trace in T
whose value may be in 𝑈 , weighted by its volume and the

upper bound of its weight interval. Note that upperBdT
𝑃
is

not a measure but only a subadditive measure.9

7
A superadditive measure 𝜇 on (Ω, ΣΩ) is a measure, except that𝜎-additivity

is replaced by𝜎-superadditivity: 𝜇 (⋃𝑖∈N𝑈𝑖 ) ≥ ∑
𝑖∈N 𝜇 (𝑈𝑖 ) for a countable,

pairwise disjoint family (𝑈𝑖 )𝑖∈N ∈ ΣΩ .
8
The 𝜎-algebra on T∞ is defined as the smallest 𝜎-algebra that contains all

sets𝑈 × T∞ where𝑈 ∈ Σ [0,1]𝑛 for some 𝑛 ∈ N. The measure 𝜇T∞ is the

unique measure with 𝜇T∞ (𝑈 × T∞) = 𝜆𝑛 (𝑈 ) when𝑈 ∈ Σ [0,1]𝑛 .
9
A subadditive measure 𝜇 on (Ω, ΣΩ) is a measure, except that 𝜎-additivity

is replaced by 𝜎-subadditivity: 𝜇 (⋃𝑖∈N𝑈𝑖 ) ≤ ∑
𝑖∈N 𝜇 (𝑈𝑖 ) for a countable,

pairwise disjoint family (𝑈𝑖 )𝑖∈N ∈ ΣΩ .
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4 Soundness and Completeness
4.1 Soundness
We show that the two bounds described above are sound, in
the following sense.

Theorem 4.1 (Sound lower bounds). Let T be a countable
and compatible set of interval traces and ⊢ 𝑃 : R a program.
Then lowerBdT

𝑃
≤ J𝑃K.

Proof. For any𝑈 ∈ ΣR, we have:

lowerBdT
𝑃 (𝑈 ) =

∑
𝒕 ∈T

vol(𝒕) (minwtI𝑃 (𝒕))
[
valI𝑃 (𝒕) ⊆ 𝑈

]
=

∑
𝒕 ∈T

∫
L𝒕M

(minwtI𝑃 (𝒕))
[
valI𝑃 (𝒕) ⊆ 𝑈

]
d𝒔

≤
∑
𝒕 ∈T

∫
L𝒕M

wt𝑃 (𝒔)
[
val𝑃 (𝒔) ∈ 𝑈

]
d𝒔 (1)

=

∫
⋃

𝒕∈TL𝒕M
wt𝑃 (𝒔)

[
val𝑃 (𝒔) ∈ 𝑈

]
d𝒔 (2)

≤
∫
T
wt𝑃 (𝒔)

[
val𝑃 (𝒔) ∈ 𝑈

]
d𝒔 = J𝑃K(𝑈 ) (3)

where Eq. (1) follows from Lemma 3.1, Eq. (2) from compati-

bility, and Eq. (3) from

⋃
𝒕 ∈TL𝒕M ⊆ T. □

Theorem 4.2 (Sound upper bounds). Let T be a countable
and exhaustive set of interval traces and ⊢ 𝑃 : R a program.
Then J𝑃K ≤ upperBdT

𝑃
.

Proof sketch. The formal proof is similar to the soundness

proof for the lower bound in Theorem 4.1, but needs an in-

finite trace semantics [16] for probabilistic programs and

is given in Appendix C.1. The idea is that each interval

trace 𝒕 summarises all infinite traces starting with L𝒕M, i.e. all
traces in cover (𝒕). Exhaustivity ensures that almost all infi-

nite traces are “covered”. □

4.2 Completeness
The soundness results for upper and lower bounds allow us

to derive bounds on the denotation of a program. One would

expect that a finer partition of interval traces will yield more

precise bounds. In this section, we show that for a program

𝑃 and an interval 𝐼 ∈ I, the approximations lowerBdT
𝑃
(𝐼 )

and upperBdT
𝑃
(𝐼 ) can in fact come arbitrarily close to J𝑃K(𝐼 )

for suitable T . However, this is only possible under certain

assumptions.

Assumption 1: use of sampled values. Interval arith-
metic is imprecise if the same value is used more than once:

consider, for instance, let 𝑠 = sample in if (𝑠 − 𝑠, 0, 1) which
deterministically evaluates to 0. However, in interval arith-

metic, if 𝑥 is approximated by an interval [𝑎, 𝑏] with 𝑎 < 𝑏,

the difference 𝑥 − 𝑥 is approximated as [𝑎 − 𝑏, 𝑏 − 𝑎], which
always contains both positive and negative values. So no

non-trivial interval trace can separate the two branches.

To avoid this, we could consider a call-by-name semantics

(as done in [4]) where sample values can only be used once

by definition. However, many of our examples cannot be

expressed in the call-by-name setting, so we instead propose

a less restrictive criterion to guarantee completeness for

call-by-value: we allow sample values to be used more than

once, but at most once in the guard of each conditional, at

most once in each score expression, and at most once in the

return value. While this prohibits terms like the one above, it

allows, e.g. let 𝑠 = sample in if (𝑠, 𝑓 (𝑠), 𝑔(𝑠)). This sufficient

condition is formalised in Appendix C.3. Most examples we

encountered in the literature satisfy this assumption.

Assumption 2: primitive functions. In addition, we re-

quire mild assumptions on the primitive functions, called

boxwise continuity and interval separability.
We need to be able to approximate a program’s weight

function by step functions in order to obtain tight bounds on

its integral. A function 𝑓 : R𝑛 → R is boxwise continuous
if it can be written as the countable union of continuous

functions on boxes, i.e. if there is a countable union of pair-

wise almost disjoint boxes 𝐵𝑖 such that

⋃
𝐵𝑖 = R

𝑛
and the

restriction 𝑓 |𝐵𝑖
is continuous for each 𝐵𝑖 .

Furthermore, we need to approximate preimages. For-

mally, we say that𝐴 is a tight subset of 𝐵 (written𝐴 ⋐ 𝐵) if

𝐴 ⊆ 𝐵 and 𝐵 \𝐴 is a null set. A function 𝑓 : R𝑛 → R is called

interval separable if for every interval [𝑎, 𝑏] ∈ I, there is
a countable set B of boxes in R𝑛 that tightly approximates

the preimage, i.e.

⋃B ⋐ 𝑓 −1 ( [𝑎, 𝑏]). A sufficient condition

for checking this is the following. If 𝑓 is boxwise continuous

and preimages of points have measure zero, then 𝑓 is already

interval separable (cf. Lemma C.4).

We assume the set F of primitive functions is closed under

composition and each 𝑓 ∈ F is boxwise continuous and

interval separable.

The completeness theorem. Using these two assumptions,

we can state completeness of our interval semantics.

Theorem 4.3 (Completeness of interval approximations).
Let 𝐼 ∈ I and ⊢ 𝑃 : R be an almost surely terminating program
satisfying the two assumptions discussed above. Then, for all
𝜖 > 0, there is a countable set of interval traces T ⊆ TI that is
compatible and exhaustive such that

upperBdT
𝑃
(𝐼 ) − 𝜖 ≤ J𝑃K(𝐼 ) ≤ lowerBdT

𝑃
(𝐼 ) + 𝜖.

Proof sketch. We consider each branching path through the

program separately. The set of relevant traces for a given

path is a preimage of intervals under compositions of interval

separable functions, hence can essentially be partitioned into

boxes. By boxwise continuity, we can refine this partition

such that the weight function is continuous on each box. To

approximate the integral, we pass to a refined partition again,

essentially computing Riemann sums. The latter converge
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to the Riemann integral, which agrees with the Lebesgue

integral under our conditions, as desired. □

For the lower bound, we can actually derive 𝜖-close bounds

using only finitely many interval traces:

Corollary 4.4. Let 𝐼 ∈ I and ⊢ 𝑃 : R be as in Theorem 4.3.
There is a sequence of finite, compatible sets of interval traces
T1,T2, . . . ⊆ TI s.t. lim𝑛→∞ lowerBdT𝑛

𝑃
(𝐼 ) = J𝑃K(𝐼 ).

For the upper bound, a restriction to finite sets T of in-

terval traces is, in general, not possible: if the weight func-

tion for a program is unbounded, it is also unbounded on

some 𝒕 ∈ T . Then wtI
𝑃
(𝒕) is an infinite interval, implying

upperBdT
𝑃
(𝐼 ) = ∞ (see Example C.3 for details). Despite the

(theoretical) need for countably infinite many interval traces,

we can, in many cases, compute finite upper bounds by mak-

ing use of an interval-based static approximation, formalised

as a type system in the next section.

5 Weight-aware Interval Type System
To obtain sound bounds on the denotation with only finitely

many interval traces, we present an interval-based type sys-

tem that can derive static bounds on a program. Crucially,

our type-system is weight-aware: we bound not only the re-

turn value of a program but also the weight of an execution.

Our analyzer GuBPI uses it for two purposes. First, it allows

us to derive upper bounds even for areas of the sample space

not covered with interval traces. Second, we can use our

analysis to derive a finite (and sound) approximation of the

infinite number of symbolic execution paths of a program

(more details are given in Section 6). Note that the bounds

inferred by our system are interval bounds, which allow for

seamless integration with our interval trace semantics. In

this section, we present the interval type system and sketch

a constraint-based type inference method.

5.1 Interval Types
We define interval types by the following grammar:

𝜎 := 𝐼 | 𝜎 → A A :=

{
𝜎

𝐼

}
where 𝐼 ∈ I is an interval. For readers familiar with refine-

ment types, it is easiest to view the type 𝜎 = 𝐼 as the refine-

ment type {𝑥 : R | 𝑥 ∈ 𝐼 }. The definition of the syntactic

categoryA by mutual recursion with 𝜎 gives a bound on the

weight of the execution. We call a type 𝜎 weightless and a

type A weighted. The following examples should give some

intuition about the types.

Example 5.1. Consider the example term(
𝜇
𝜑
𝑥 . 5 × 𝑥 ⊕0.5 sigm(𝜑 𝑥 + score sample)

)
(4 × sample)

where sigm : R→ [0, 1] is the sigmoid function. In our type

system, this term can be typed with the weighted type

{
[0, 20]
[0, 1]

}
,

which indicates that any terminating execution of the term

𝑥 : 𝜎 ∈ Γ

Γ ⊢ 𝑥 :

{
𝜎

1

} Γ ⊢ 𝑀 : A A ⊑A B
Γ ⊢ 𝑀 : B

Γ;𝜑 : 𝜎 → A;𝑥 : 𝜎 ⊢ 𝑀 : A

Γ ⊢ 𝜇
𝜑
𝑥 . 𝑀 :

{
𝜎 → A

1

}

Γ;𝑥 : 𝜎 ⊢ 𝑀 : A

Γ ⊢ 𝜆𝑥.𝑀 :

{
𝜎 → A

1

}
Γ ⊢ 𝑀 :

𝜎1 →
{

𝜎2

[𝑒, 𝑓 ]

}
[𝑎,𝑏 ]

 Γ ⊢ 𝑁 :

{
𝜎1

[𝑐,𝑑 ]

}
Γ ⊢ 𝑀𝑁 :

{
𝜎2

[𝑎,𝑏 ] ×I [𝑐,𝑑 ] ×I [𝑒, 𝑓 ]

}

Γ ⊢ 𝑟 :

{
[𝑟, 𝑟 ]
1

} Γ ⊢ 𝑀 :

{
[_, _]
[𝑎,𝑏 ]

}
Γ ⊢ 𝑁 :

{
𝜎

[𝑐,𝑑 ]

}
Γ ⊢ 𝑃 :

{
𝜎

[𝑐,𝑑 ]

}
Γ ⊢ if (𝑀,𝑁, 𝑃 ) :

{
𝜎

[𝑎,𝑏 ] ×I [𝑐,𝑑 ]

}

Γ ⊢ sample :
{
[0, 1]
1

} Γ ⊢ 𝑀 :

{
[𝑎,𝑏 ]
[𝑐,𝑑 ]

}
Γ ⊢ score(𝑀) :

{
[𝑎,𝑏 ] ⊓ [0,∞]

[𝑐,𝑑 ] ×I
(
[𝑎,𝑏 ] ⊓ [0,∞]

)}
Γ ⊢ 𝑀1 :

{
[𝑎1, 𝑏1 ]
[𝑐1, 𝑑1 ]

}
· · · Γ ⊢ 𝑀|𝑓 | :

{
[𝑎 |𝑓 |, 𝑏 |𝑓 | ]
[𝑐 |𝑓 |, 𝑑 |𝑓 | ]

}
Γ ⊢ 𝑓 (𝑀1, . . . , 𝑀|𝑓 |) :

{
𝑓 I ( [𝑎1, 𝑏1 ], . . . , [𝑎 |𝑓 |, 𝑏 |𝑓 | ])

(×I) |𝑓 |
𝑖=1

[𝑐𝑖 , 𝑑𝑖 ]

}
Figure 4.Weight-aware interval type system for SPCF. We

abbreviate 1 := [1, 1].

reduces to a value (a number) within [0, 20] and the weight

of any such execution lies within [0, 1].

Example 5.2. We consider the fixpoint subexpression of

the pedestrian example in Example 1.1 which is

𝜇
𝜑
𝑥 .if (𝑥, 0,

(
𝜆step.step + 𝜑 ((𝑥+step) ⊕0.5 (𝑥−step))

)
sample).

Using the typing rules (defined below), we can infer the

type

 [𝑎, 𝑏] →
{
[0,∞]
[1, 1]

}
[1, 1]

 for any 𝑎, 𝑏. This type indicates that any

terminating execution reduces to a function value (of simple

type R → R) with weight within [1, 1]. If this function
value is then called on a value within [𝑎, 𝑏], any terminating

execution reduces to a value within [0,∞] with a weight

within [1, 1].

Subtyping. The partial order on intervals naturally ex-

tends to our type system. For base types 𝐼1 and 𝐼2, we define

𝐼1 ⊑𝜎 𝐼2 just if 𝐼1 ⊑ 𝐼2, where ⊑ is interval inclusion. We then

extend this via:

𝜎2 ⊑𝜎 𝜎1 A1 ⊑A A2

𝜎1 → A1 ⊑𝜎 𝜎2 → A2

𝜎1 ⊑𝜎 𝜎2 𝐼1 ⊑ 𝐼2{
𝜎1
𝐼1

}
⊑A

{
𝜎2
𝐼2

}
Note that in the case of weighted types, the subtyping re-

quires not only that the weightless types be subtype-related

(𝜎1 ⊑𝜎 𝜎2) but also that the weight bound be refined 𝐼1 ⊑ 𝐼2.

It is easy to see that both ⊑A and ⊑𝜎 are partial orders on

types with the same underlying base type.
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5.2 Type System
As for the interval-based semantics, we assume that every

primitive operation 𝑓 : R𝑛 → R has an overapproximating

interval abstraction 𝑓 I : I𝑛 → I (cf. Section 3.1). Interval

typing judgments have the form Γ ⊢ 𝑀 : A where Γ is a

typing context mapping variables to types 𝜎 . They are given

via the rules in Fig. 4. Our system is sound in the following

sense (which we here only state for first-order programs).

Theorem 5.1. Let ⊢ 𝑃 : R be a simply-typed program. If
⊢ 𝑃 :

{
[𝑎, 𝑏]
[𝑐, 𝑑]

}
and (𝑃, 𝒔, 1) →∗ (𝑟, ⟨⟩,𝑤) for some 𝒔 ∈ T and

𝑟,𝑤 ∈ R, then 𝑟 ∈ [𝑎, 𝑏] and𝑤 ∈ [𝑐, 𝑑].
Note that the bounds derived by our type system only

refer to terminating executions, i.e. they are partial correct-

ness statements. Theorem 5.1 formalises the intuition of an

interval type, i.e. every type derivation in our system bounds

both the returned value (in typical refinement-type fashion

[24]) and the weight of this derivation. Our type system also

comes with a weak completeness statement: for each term,

we can derive some bounds in our system.

Proposition 5.2. Let ⊢ 𝑃 : 𝛼 be a simply-typed program.
There exists a weighted interval type A such that ⊢ 𝑃 : A.

5.3 Constraint-based Type Inference
In this section, we briefly discuss the automated type infer-
ence in our system, as needed in our tool GuBPI. For space

reasons, we restrict ourselves to an informal overview (see

Appendix D for a full account).

Given a program 𝑃 , we can derive the symbolic skeleton

of a type derivation (the structure of which is determined by

𝑃 ), where each concrete interval is replaced by a placeholder

variable. The validity of a typing judgment within this skele-

ton can then be encoded as constraints. Crucially, as we work

in the fixed interval domain and the subtyping structure ⊑A
is compositional, they are simple constraints over the place-

holder variables in the abstract interval domain. Solving the

resulting constraints naïvely might not terminate since the

interval abstract domain is not chain-complete. Instead, we

approximate the least fixpoint (where the fixpoint denotes a

solution to the constraints) using widening, a standard ap-

proach to ensure termination of static analysis on domains

with infinite chains [13, 14]. This is computationally much

cheaper compared to, say, types with general first-order re-

finements where constraints are typically phrased as con-

strained Horn clauses (see e.g. [11]). This gain in efficiency

is crucial to making our GuBPI tool practical.

6 Symbolic Execution and GuBPI
In this section, we describe the overall structure of our tool

GuBPI (gubpi-tool.github.io), which builds upon symbolic

execution. We also outline how the interval-based semantics

can be accelerated for programs containing linear subexpres-

sions.

6.1 Symbolic Execution
The starting point of our analysis is a symbolic exploration of

the term in question [10, 28, 41]. For space reasons we only

give an informal overview of the approach. A detailed and

formal discussion can be found in Appendix B.

The idea of symbolic execution is to treat outcomes of

sample expressions fully symbolically: each sample evalu-
ates to a fresh variable (𝛼1, 𝛼2, . . . ), called sample variable.
The result of symbolic execution is thus a symbolic value: a

term consisting of sample variables and delayed primitive

function applications. We postpone branching decisions and

the weighting with score expressions because the value in
question is symbolic. During execution, we therefore ex-

plore both branches of a conditional and keep track of the

(symbolic) conditions on the sample variables that need to

hold in the current branch. Similarly, we record the (sym-

bolic) values of score expressions. Formally, our symbolic

execution operates on symbolic configurations of the form
𝜓 = (M, 𝑛,Δ,Ξ) where M is a symbolic term containing

sample variables instead of sample outcomes; 𝑛 ∈ N is a

natural number used to obtain fresh sample variables; Δ is a

list of symbolic constraints of the formV ⊲⊳ 𝑟 , whereV is

a symbolic value, 𝑟 ∈ R and ⊲⊳ ∈ {≤, <, >, ≥}, to keep track

of the conditions for the current execution path; and Ξ is

a set of values that records all symbolic values of score ex-
pressions encountered along the current path. The symbolic

reduction relation{ includes the following key rules.

(sample, 𝑛,Δ,Ξ) { (𝛼𝑛+1, 𝑛 + 1,Δ,Ξ)
(if (V,N ,P)), 𝑛,Δ,Ξ) { (N , 𝑛,Δ ∪ {V ≤ 0},Ξ)
(if (V,N ,P)), 𝑛,Δ,Ξ) { (P, 𝑛,Δ ∪ {V > 0},Ξ)
(score(V), 𝑛,Δ,Ξ) { (V, 𝑛,Δ ∪ {V ≥ 0},Ξ ∪ {V})

That is, we replace sample outcomes with fresh sample vari-

ables (first rule), explore both paths of a conditional (second

and third rule), and record all score values (fourth rule).

Example 6.1. Consider the symbolic execution of Exam-

ple 1.1 where the first step moves the pedestrian towards

their home (taking the right branch of ⊕0.5) and the second

step moves away from their home (the left branch of ⊕0.5).

We reach a configuration (M, 5,Δ,Ξ) whereM is

score
(
pdf

Normal(1.1,0.1)
(
𝛼2+𝛼4+(𝜇𝜑𝑥 .N)(3𝛼1−𝛼2+𝛼4)

) )
; 3𝛼1.

Here 𝛼1 is the initial sample for start; 𝛼2, 𝛼4 the two samples

of step; and 𝛼3, 𝛼5 the samples involved in the ⊕0.5 operator.

The fixpoint 𝜇
𝜑
𝑥 .N is already given in Example 5.2, Ξ = ∅

and Δ = {3𝛼1 > 0, 𝛼3 >
1

2
, 3𝛼1−𝛼2 > 0, 𝛼5 ≤ 1

2
}.

For a symbolic value V using sample variables 𝛼 = 𝛼1,

. . . , 𝛼𝑛 and 𝒔 ∈ [0, 1]𝑛 , we writeV[𝒔/𝛼] ∈ R for the substi-

tution of concrete values in 𝒔 for the sample variables. Call

a symbolic configuration of the form Ψ = (V, 𝑛,Δ,Ξ) (i.e. a
configuration that has reached a symbolic valueV) a sym-
bolic path. We write symPaths(𝜓 ) for the (countable) set of

https://gubpi-tool.github.io/
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Algorithm 1 Symbolic Analysis in GuBPI.

1: Input: Program ⊢ 𝑃 : R, depth limit 𝐷 ∈ N, and 𝐼 ∈ I
2: 𝜓init := (𝑃, 0, ∅, ∅); 𝑆 := {(𝜓init, 0)};𝑇 := ∅
3: while ∃(𝜓, depth) ∈ 𝑆 do
4: if 𝜓 has terminated then
5: 𝑇 := 𝑇 ∪ {𝜓 }; 𝑆 := 𝑆 \ {(𝜓, depth)}
6: else if 𝜓 contains no fixpoints or depth ≤ 𝐷 then
7: 𝑆 := 𝑆 \ {(𝜓, depth)}
8: for𝜓 ′

with𝜓 { 𝜓 ′ do
9: 𝑆 := 𝑆 ∪ {(𝜓 ′, depth + 1)}
10: else
11: 𝑆 := (𝑆 \ {(𝜓, depth)}) ∪{(approxFix (𝜓 ), depth)}
12: return

[ ∑
Ψ∈𝑇 JΨKlb (𝐼 ),

∑
Ψ∈𝑇 JΨKub (𝐼 )

]
symbolic paths reached when evaluating from configuration

𝜓 . Given a symbolic path Ψ = (V, 𝑛,Δ,Ξ) and a set𝑈 ∈ ΣR,
we define the denotation along Ψ, written JΨK(𝑈 ), as∫

[0,1]𝑛

[
V[𝒔/𝛼] ∈ 𝑈

] ∏
C⊲⊳𝑟 ∈Δ

[
C[𝒔/𝛼] ⊲⊳ 𝑟

] ∏
W∈Ξ

W[𝒔/𝛼] d𝒔,

i.e. the integral of the product of the scoreweights Ξ over the

traces of length 𝑛 where the result value is in𝑈 and all the

constraints Δ are satisfied. We can recover the denotation of

a program 𝑃 (as defined in Section 2) from all its symbolic

paths starting from the configuration (𝑃, 0, ∅, ∅).

Theorem 6.1. Let ⊢ 𝑃 : R be a program and𝑈 ∈ ΣR. Then

J𝑃K(𝑈 ) = ∑
Ψ∈symPaths (𝑃,0,∅,∅) JΨK(𝑈 ).

Analogously to interval SPCF (Section 3), we define sym-
bolic interval terms as symbolic terms that may contain

intervals (and similarly for symbolic interval values, sym-

bolic interval configurations, and symbolic interval paths).

6.2 GuBPI
With symbolic execution at hand, we can outline the struc-

ture of our analysis tool GuBPI (sketched in Algorithm 1).

GuBPI’s analysis begins with symbolic execution of the in-

put term to accumulate a set of symbolic interval paths 𝑇 . If
a symbolic configuration 𝜓 has exceeded the user-defined

depth limit 𝐷 and still contains a fixpoint, we overapproxi-

mate all paths that extend𝜓 to ensure a finite set 𝑇 . We ac-

complish this by using the interval type system (Section 5) to

overapproximate all fixpoint subexpressions, thereby obtain-

ing strongly normalizing terms (in line 11). Formally, given

a symbolic configuration 𝜓 = (M, 𝑛,Δ,Ξ) we derive a typ-
ing judgment for the termM in the system from Section 5.

Each first-order fixpoint subterm is thus given a (weight-

less) type of the form [𝑎, 𝑏] →
{
[𝑐, 𝑑]
[𝑒, 𝑓 ]

}
. We replace this fixpoint

with 𝜆_.
(
score( [𝑒, 𝑓 ]) ; [𝑐, 𝑑]

)
. We denote this operation on

configurations by approxFix (𝜓 ) (it extends to higher-order
fixpoints as expected). Note that approxFix (𝜓 ) is a symbolic

interval configuration.

Example 6.2. Consider the symbolic configuration given in

Example 6.1. As in Example 5.2 we infer the type of 𝜇
𝜑
𝑥 .N to

be [−1, 4] →
{
[0,∞]
[1, 1]

}
. The function approxFix replaces 𝜇

𝜑
𝑥 .N with

𝜆_.score( [1, 1]); [0,∞]. By evaluating the resulting symbolic

interval configuration further, we obtain the symbolic in-

terval path (3𝛼1, 5,Δ,Ξ) where Δ is as in Example 6.1 and

Ξ = {pdf
Normal(1.1,0.1) (𝛼2+𝛼4+[0,∞])}. Note that, in general,

the further evaluation of approxFix (𝜓 ) can result in multiple

symbolic interval paths.

Afterwards, we’re left with a finite set 𝑇 of symbolic in-

terval paths. Due to the presence of intervals, we cannot

define a denotation of such paths directly and instead define

lower and upper bounds. For a symbolic interval value V
that contains no sample variables, we define ⌜V⌝ ⊆ R as

the set of all values that the term can evaluate to by replac-

ing every interval [𝑎, 𝑏] with some value 𝑟 ∈ [𝑎, 𝑏]. Given
a symbolic interval path Ψ = (V, 𝑛,Δ,Ξ) and 𝑈 ∈ ΣR we

define JΨKlb (𝑈 ) by considering only those concrete traces

that fulfill the constraints in Ψ for all concrete values in the

intervals and take the infimum over all scoring expressions:∫ [
⌜V[𝒔/𝛼]⌝ ⊆ 𝑈

]∏
C⊲⊳𝑟 ∈Δ

[
∀𝑡 ∈ ⌜C[𝒔/𝛼]⌝.𝑡 ⊲⊳ 𝑟

] ∏
W∈Ξ

inf⌜W[𝒔/𝛼]⌝ d𝒔 .

Similarly, we define JΨKub (𝑈 ) as∫ [
⌜V[𝒔/𝛼]⌝ ∩𝑈 ≠ ∅

]∏
C⊲⊳𝑟 ∈Δ

[
∃𝑡 ∈ ⌜C[𝒔/𝛼]⌝.𝑡 ⊲⊳ 𝑟

] ∏
W∈Ξ

sup⌜W[𝒔/𝛼]⌝ d𝒔 .

Wenote that, ifΨ contains no intervals, JΨK is defined andwe
have JΨKlb = JΨKub = JΨK. We can now state the following

theorem that formalises the observation that approxFix (𝜓 )
soundly approximates all symbolic paths that result from𝜓 .

Theorem 6.2. Let𝜓 be a symbolic (interval-free) configura-
tion and 𝑈 ∈ ΣR. Define 𝐴 = symPaths(𝜓 ) as the (possibly
infinite) set of all symbolic paths reached when evaluating𝜓
and 𝐵 = symPaths(approxFix (𝜓 )) as the (finite) set of sym-
bolic interval paths reached when evaluating approxFix (𝜓 ).
Then∑

Ψ∈𝐵 JΨKlb (𝑈 ) ≤ ∑
Ψ∈𝐴 JΨK(𝑈 ) ≤ ∑

Ψ∈𝐵 JΨKub (𝑈 ).
The correctness of Algorithm 1 is then a direct conse-

quence of Theorems 6.1 and 6.2:

Corollary 6.3. Let 𝑇 be the set of symbolic interval paths
computed when at line 12 of Algorithm 1 and𝑈 ∈ ΣR. Then∑

Ψ∈𝑇 JΨKlb (𝑈 ) ≤ J𝑃K(𝑈 ) ≤ ∑
Ψ∈𝑇 JΨKub (𝑈 ).

What remains is to compute (lower bounds on) JΨKlb (𝐼 )
and (upper bounds on) JΨKub (𝐼 ) for a symbolic interval path

Ψ ∈ 𝑇 and 𝐼 ∈ I. We first present the standard interval trace

semantics (Section 6.3) and then a more efficient analysis for

the case that Ψ contains only linear functions (Section 6.4).

6.3 Standard Interval Trace Semantics
For any symbolic interval path Ψ, we can employ the se-

mantics as introduced in Section 3. Instead of applying the
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analysis to the entire program, we can restrict to the current

path Ψ (intuitively, by adding a score(0) to all other program
paths). The interval traces split the domain of each sample

variable in Ψ into intervals. It is easy to see that for any

compatible and exhaustive set of interval traces T , we have

lowerBdT
Ψ (𝑈 ) ≤ JΨKlb (𝑈 ) and JΨKub (𝑈 ) ≤ upperBdT

Ψ (𝑈 )
for any 𝑈 ∈ ΣR (see Theorem 4.1 and 4.2). Applying the

interval-based semantics on the level of symbolic interval

paths maintains the attractive features, namely soundness

and completeness (relative to the current path) of the se-

mantics. Note that the intervals occurring in Ψ seamlessly

integrate with our interval-based semantics.

6.4 Linear Interval Trace Semantics
In case the score values and the guards of all conditionals

are linear, we can improve and speed up the interval-based

semantics.

Assume all symbolic interval values appearing in Ψ are

interval linear functions of𝛼 (i.e. functions𝛼 ↦→ w⊺𝛼+I [𝑎, 𝑏]
for some w ∈ R𝑛 and [𝑎, 𝑏] ∈ I). We assume, for now, that

each symbolic valueW ∈ Ξ denotes an interval-free linear

function (i.e. a function 𝛼 ↦→ w⊺𝛼 + 𝑟 ). Fix some interval

𝐼 ∈ I. We first note that both JΨKlb (𝐼 ) and JΨKub (𝐼 ) are the
integral of a polynomial over a convex polytope: define

𝔓lb :=
{
𝒔 ∈ R𝑛 | ⌜V[𝒔/𝛼]⌝⊆ 𝐼 ∧

∧
C⊲⊳𝑟 ∈Δ

∀𝑡 ∈ ⌜C[𝒔/𝛼]⌝.𝑡 ⊲⊳ 𝑟
}

which is a polytope.
10

Then JΨKlb (𝐼 ) is the integral of the
polynomial 𝛼 ↦→ ∏

W∈Ξ W over𝔓lb. The definition of𝔓ub
(as the region of integration for JΨKub (𝐼 )) is similar. Such

integrals can be computed exactly [2], e.g. with the LattE

tool [20]. Unfortunately, our experiments showed that this

does not scale to interesting probabilistic programs.

Instead, we derive guaranteed bounds on the denotation

by means of iterated volume computations. This has the

additional benefit that we can handle non-uniform sam-

ples and non-liner expressions in Ξ. We follow an approach

similar to that of the interval-based semantics in Section 4

but do not split/bound individual sample variables and in-

stead directly bound linear functions over the sample vari-

ables. Let Ξ = {W1, . . . ,W𝑘 }. We define a box (by abuse of

language) as an element 𝒕 = ⟨[𝑎1, 𝑏1], . . . , [𝑎𝑘 , 𝑏𝑘 ]⟩, where
[𝑎𝑖 , 𝑏𝑖 ] gives a bound on W𝑖 .

11
We define lb(𝒕) := ∏𝑘

𝑖=1 𝑎𝑖

and ub(𝒕) := ∏𝑘
𝑖=1 𝑏𝑖 . The box 𝒕 naturally defines a subset

of 𝔓lb given by 𝔓𝒕
lb =

{
𝒔 ∈ 𝔓lb | ∧𝑘

𝑖=1 W𝑖 [𝒔/𝛼] ∈ [𝑎𝑖 , 𝑏𝑖 ]
}
.

Then 𝔓𝒕
lb is again a polytope and we write vol(𝔓𝒕

lb) for its
volume. The definition of𝔓𝒕

ub and vol(𝔓
𝒕
ub) is analogous. As

for interval traces, we call two boxes 𝒕1, 𝒕2 compatible if the
intervals are almost disjoint in at least one position. A set

10
For example, if C denotes the function𝛼 ↦→ w⊺𝛼+[𝑎,𝑏 ] we can transform

a constraint ∀𝑡 ∈ ⌜C[𝒔/𝛼 ]⌝.𝑡 ≤ 𝑟 into the linear constraint w⊺𝛼 + 𝑏 ≤ 𝑟 .
11
Note the similarity to the interval trace semantics. While the 𝑖th position

in an interval trace bounds the value of the 𝑖th sample variable, the 𝑖th

entry of a box bounds the 𝑖th score value.

of boxes 𝐵 is compatible if its elements are pairwise compat-

ible and exhaustive if
⋃

𝒕 ∈𝐵 𝔓
𝒕
lb = 𝔓lb and

⋃
𝒕 ∈𝐵 𝔓

𝒕
ub = 𝔓ub

(cf. Section 3.3).

Proposition 6.4. Let 𝐵 be a compatible and exhaustive set of
boxes. Then

∑
𝒕 ∈𝐵 lb(𝒕) ·vol

(
𝔓𝒕

lb

)
≤ JΨKlb (𝐼 ) and JΨKub (𝐼 ) ≤∑

𝒕 ∈𝐵 ub(𝒕) · vol
(
𝔓𝒕

ub

)
.

As in the standard interval semantics, a finer partition into

boxes yields more precise bounds. While the volume com-

putation involved in Proposition 6.4 is expensive [22], the

number of splits on the linear functions is much smaller than

that needed in the standard interval-based semantics. Our

experiments empirically demonstrate that the direct splitting

of linear functions (if applicable) is usually superior to the

standard splitting. In GuBPI we compute a set of exhaustive

boxes by first computing a lower and upper bound on each

W𝑖 ∈ Ξ over 𝔓lb (or 𝔓ub) by solving a linear program (LP)

and splitting the resulting range in evenly sized chunks.

Beyonduniform samples and linear scores. We can ex-

tend our linear optimization to non-uniform samples and

arbitrary symbolic values in Ξ. We accomplish the former

by combining the optimised semantics (where we bound lin-

ear expressions) with the standard interval-trace semantics

(where we bound individual sample variables). For the latter,

we can identify linear sub-expressions of the expressions in

Ξ, use boxes to bound each linear sub-expression, and use

interval arithmetic to infer bounds on the entire expression

from bounds on its linear sub-expressions. More details can

be found in Appendix E.1.

Example 6.3. Consider the path Ψ = (3𝛼1, 5,Δ,Ξ) derived
in Example 6.2. We use 1-dimensional boxes to bound 𝛼2 +
𝛼4 (the single linear sub-expression of the symbolic values

in Ξ). To obtain a lower bound on JΨKlb (𝐼 ), we sum over

all boxes 𝒕 = ⟨[𝑎1, 𝑏1]⟩ and take the product of vol

(
𝔓𝒕

lb

)
with the lower interval bound of pdf

Normal(1.1,0.1) ( [𝑎1, 𝑏1] +
[0,∞]) (evaluated in interval arithmetic). Analogously, for

the upper bound we take the product of vol

(
𝔓𝒕

ub

)
with the

upper interval bound of pdf
Normal(1.1,0.1) ( [𝑎1, 𝑏1] + [0,∞]).

7 Practical Evaluation
We have implemented our semantics in the prototype GuBPI

(gubpi-tool.github.io), written in F#. In cases where we apply

the linear optimisation of our semantics, we use Vinci [8] to

discharge volume computations of convex polytopes. We set

out to answer the following questions:

1. How does GuBPI perform on instances that could al-

ready be solved (e.g. by PSI [26])?

2. Is GuBPI able to infer useful bounds on recursive pro-

grams that could not be handled rigorously before?

7.1 Probability Estimation
We collected a suite of 18 benchmarks from [56]. Each bench-

mark consists of a program 𝑃 and a query𝜙 over the variables

https://gubpi-tool.github.io/
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Table 1. Evaluation on selected benchmarks from [56]. We

give the times (in seconds) and bounds computed by [56]

and GuBPI. Details on the exact queries (the Q column) can

be found in Table 4 in the appendix.

Tool from [56] GuBPI

Program Q 𝒕 Result 𝒕 Result

tug-of-war Q1 1.29 [0.6126, 0.6227] 0.72 [0.6134, 0.6135]
tug-of-war Q2 1.09 [0.5973, 0.6266] 0.79 [0.6134, 0.6135]
beauquier-3 Q1 1.15 [0.5000, 0.5261] 22.5 [0.4999, 0.5001]
ex-book-s Q1 8.48 [0.6633, 0.7234] 6.52 [0.7417, 0.7418]
ex-book-s Q2

★
10.3 [0.3365, 0.3848] 8.01 [0.4137, 0.4138]

ex-cart Q1 2.41 [0.8980, 1.1573] 67.3 [0.9999, 1.0001]
ex-cart Q2 2.40 [0.8897, 1.1573] 68.5 [0.9999, 1.0001]
ex-cart Q3 0.15 [0.0000, 0.1150] 67.4 [0.0000, 0.0001]
ex-ckd-epi-s Q1

★
0.15 [0.5515, 0.5632] 0.86 [0.0003, 0.0004]

ex-ckd-epi-s Q2
★

0.08 [0.3019, 0.3149] 0.84 [0.0003, 0.0004]
ex-fig6 Q1 1.31 [0.1619, 0.7956] 21.2 [0.1899, 0.1903]
ex-fig6 Q2 1.80 [0.2916, 1.0571] 21.4 [0.3705, 0.3720]
ex-fig6 Q3 1.51 [0.4314, 2.0155] 24.7 [0.7438, 0.7668]
ex-fig6 Q4 3.96 [0.4400, 3.0956] 27.4 [0.8682, 0.9666]
ex-fig7 Q1 0.04 [0.9921, 1.0000] 0.18 [0.9980, 0.9981]
example4 Q1 0.02 [0.1910, 0.1966] 0.31 [0.1918, 0.1919]
example5 Q1 0.06 [0.4478, 0.4708] 0.27 [0.4540, 0.4541]
herman-3 Q1 0.47 [0.3750, 0.4091] 124 [0.3749, 0.3751]

of 𝑃 . We bound the probability of the event described by 𝜙

using the tool from [56] and GuBPI (Table 1). While our

tool is generally slower than the one in [56], the comple-

tion times are still reasonable. Moreover, in many cases, the

bounds returned by GuBPI are tighter than those of [56]. In

addition, for benchmarks marked with a ★, the two pairs

of bounds contradict each other.
12
We should also remark

that GuBPI cannot handle all benchmarks proposed in [56]

because the heavy use of conditionals causes our precise

symbolic analysis to suffer from the well-documented path

explosion problem [6, 9, 30]. Perhaps unsurprisingly, [56]

can handle such examples much better, as one of their core

contributions is a stochastic method to reduce the number

of paths considered (see Section 8). Also note that [56] is

restricted to uniform samples, linear guards and score-free

programs, whereas we tackle a much more general problem.

7.2 Exact Inference
To evaluate our tool on instances that can be solved exactly,

we compared it with PSI [26, 27], a symbolic solver which

can, in certain cases, compute a closed-form solution of the

posterior. We note that whenever exact inference is possi-

ble, exact solutions will always be superior to mere bounds

and, due to the overhead of our semantics, will often be

12
A stochastic simulation using 10

6
samples in Anglican [61] yielded results

that fall within GuBPI’s bounds but violate those computed by [56].

Table 2. Probabilistic programs with discrete domains from

PSI [26]. The times for PSI and GuBPI are given in seconds.

Instance 𝒕PSI 𝒕GuBPI Instance 𝒕PSI 𝒕GuBPI

burglarAlarm 0.06 0.21 coins 0.04 0.18

twoCoins 0.04 0.21 ev-model1 0.04 0.21

grass 0.06 0.37 ev-model2 0.04 0.20

noisyOr 0.14 0.72 murderMystery 0.04 0.19

bertrand 0.04 0.22 coinBiasSmall 0.13 1.92

coinPattern 0.04 0.19 gossip 0.08 0.24

(a) coinBias example from [26].

The program samples a beta

prior on the bias of a coin and

observes repeated coin flips (26

seconds).

(b) max example from [26]. The

program compute the maximum

of two i.i.d. normal samples (31

seconds).

(c) Binary Gaussian Mixture

Model from [65] (39 seconds).

MCMC methods usually find

only one mode.

(d) Neal’s funnel from [34, 48]

(2.8 seconds). HMC misses some

probability mass around 0.

Figure 5. Guaranteed Bounds computed by GuBPI for a

selection of non-recursive models from [26, 27, 48, 65].

found faster. Because of the different output formats (i.e. ex-

act results vs. bounds), a direct comparison between exact

methods and GuBPI is challenging. As a consistency check,

we collected benchmarks from the PSI repository where the

output domain is finite and GuBPI can therefore compute

exact results (tight bounds). They agree with PSI in all cases,

which includes 8 of the 21 benchmarks from [26]. We report

the computation times in Table 2.

We then considered examples where GuBPI computes

non-tight bounds. For space reasons, we can only include a

selection of examples in this paper. The bounds computed by

GuBPI and a short description of each example are shown in

Fig. 5. We can see that, despite the relatively loose bounds,

they are still useful and provide the user with a rough—

and most importantly, guaranteed to be correct—idea of the
denotation.
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(a) cav-example-7. Program taken from

the PSI repository. PSI bounds the depth

resulting in a spike at 10, whereas GuBPI

can compute bounds on the denotation of

the unbounded program (112 seconds).

(b) cav-example-5. Program taken from

the PSI repository. PSI cannot handle this

program due to the unbounded loops (192

seconds).

(c) add_uniform_with_counter_large.
Program taken from the PSI repository.

GuBPI can handle the unbounded loop,

whereas PSI unrolls to a fixed depth (21

seconds).

(d) random-box-walk. The program mod-

els the cumulative distance traveled by a

biased random walk. If a uniformly sam-

pled step 𝑠 has length less than 1

2
, we move

𝑠 to the left, otherwise 𝑠 to the right. The

walk stops when it crosses a threshold (167

seconds).

(e) growing-walk. The program models a

geometric random walk where (with in-

creasing distance) the step size of the walk

is increased. The cumulative distance is

observed from a normal distribution cen-

tered at 3 (67 seconds).

(f) param-estimation-recursive. We

sample a uniform prior 𝑝 and (in each step)

travel to the left with probability 𝑝 and to

the right with probability (1 − 𝑝). We ob-

serve the walk to come to a halt at location

1 (observed from a normal) and wish to

find the posterior on 𝑝 (162 seconds).

Figure 6. Guaranteed bounds computed by GuBPI for a selection of recursive models.

The success of exact solvers such as PSI depends on the

underlying symbolic solver (and the optimisations imple-

mented). Consequently, there are instances where the sym-

bolic solver cannot compute a closed-form (integral-free)

solution. Conversely, while our method is (theoretically)

applicable to a very broad class of programs, there exist

programs where the symbolic solver finds solutions but the

analysis in GuBPI becomes infeasible due to the large number

of interval traces required.

7.3 Recursive Models
We also evaluated our tool on complex models that can-
not be handled by any of the existing methods. For space

reasons, we only give an overview of some examples. Unex-

pectedly, we found recursive models in the PSI repository:

there are examples that are created by unrolling loops to a

fixed depth. This fixed unrolling changes the posterior of

the model. Using our method we can handle those examples

without bounding the loop. Three such examples are shown

in Figs. 6a to 6c. In Fig. 6a, PSI bounds the iterations resulting

in a spike at 10 (the unrolling bound). For Fig. 6b, PSI does not

provide any solution whereas GuBPI provides useful bounds.

For Fig. 6c, PSI bounds the loop to compute results (displayed

in blue) whereas GuBPI computes the green bounds on the

unbounded program. It is obvious that the bounds differ sig-

nificantly, highlighting the impact that unrolling to a fixed

depth can have on the denotation. This again strengthens

the claim that rigorous methods that can handle unbounded

loops/recursion are needed. There also exist unbounded dis-

crete examples where PSI computes results for the bounded

version that differ from the denotation of the unbounded

program. Figs. 6d to 6f depict further recursive examples

(alongside a small description).

Lastly, as a very challenging example, we consider the

pedestrian example (Example 1.1) again. The bounds com-

puted by GuBPI are given in Fig. 7 together with the two

stochastic results from Fig. 1. The bounds are clearly precise

enough to rule out the HMC samples. Since this example

has infinite expected running time, it is very challenging

and GuBPI takes about 1.5h (84 min).
13
In fact, guaranteed

bounds are the only method to recognise the wrong samples

with certainty (see the next section for statistical methods).

13
While the running time seems high, we note that Pyro HMC took about an

hour to generate 10
4
samples and produce the (wrong) histogram. Diagnostic

methods like simulation-based calibration took even longer (>30h) and

delivered inconclusive results (see Section 7.4 for details).
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Figure 7. Bounds for the pedestrian example (Example 1.1).

Table 3. Running times of GuBPI and SBC for (Pyro’s) HMC.

Times are given in seconds (s) and hours (h).

Instance 𝒕GuBPI 𝒕SBC

Binary GMM (1-dimensional) (Fig. 5c) 39s 1h

Binary GMM (2-dimensional) 4h 1.5h

Pedestrian Example (Fig. 7) 1.5h >300h

7.4 Comparison with Statistical Validation
A general approach to validating inference algorithms for

a generative Bayesian model is simulation-based calibration
(SBC) [12, 60]. SBC draws a sample 𝜃 from the prior distribu-

tion of the parameters, generates data𝑦 for these parameters,

and runs the inference algorithm to produce posterior sam-

ples 𝜃1, . . . , 𝜃𝐿 given 𝑦. If the posterior samples follow the

true posterior distribution, the rank statistic of the prior

sample 𝜃 relative to the posterior samples will be uniformly

distributed. If the empirical distribution of the rank statistic

after many such simulations is non-uniform, this indicates a

problem with the inference. While SBC is very general, it is

computationally expensive because it performs inference in

every simulation. Moreover, as SBC is a stochastic validation

approach, any fixed number of samples may fail to diagnose

inference errors that only occur on a very low probability

region.

We compare the running times of GuBPI and SBC for three

examples where Pyro’s HMC yields wrong results (Table 3).

Running SBC on the pedestrian example (with a reduced

sample size and using the parameters recommended in [60])

took 32 hours and was still inconclusive because of strong au-

tocorrelation. Reducing the latter via thinning requires more

samples, and would increase the running time to >300 hours.

Similarly, GuBPI diagnoses the problem with the mixture

model in Fig. 5c in significantly less time than SBC. How-

ever, for higher-dimensional versions of this mixture model,

SBC clearly outperforms GuBPI. We give a more detailed

discussion of SBC for these examples in Appendix F.3.

7.5 Limitations and Future Improvements
The theoretical foundations of our interval-based semantics

ensure that GuBPI is applicable to a very broad class of pro-

grams (cf. Section 4). In practice, as usual for exact methods,

GuBPI does not handle all examples equally well.

Firstly, as we already saw in Section 7.1, the symbolic

execution—which forms the entry point of the analysis—

suffers from path explosion. On some extreme loop/recursion-

free programs (such as example-ckd-epi from [56]), our tool

cannot compute all (finitely many) symbolic paths in reason-

able time, let alone analyse them in our semantics. Extending

the approach from [56], to sample representative program

paths (in the presence of conditioning), is an interesting fu-

ture direction that we can combine with the rigorous analysis

provided by our interval type system.

Secondly, our interval-based semantics imposes bounds on

each sampled variable and thus scales exponentially with the

dimension of the model; this is amplified in the case where

the optimised semantics (Section 6.4) is not applicable. It

would be interesting to explore whether this can be alleviated

using different trace splitting techniques.

Lastly, the bounds inferred by our interval type system

take the form of a single interval with no information about

the exact distribution on that interval. For example, the most

precise bound derivable for the term 𝜇
𝜑
𝑥 .𝑥 ⊕

[
𝜑 (𝑥 +sample) ⊕

𝜑 (𝑥−sample)
]
is [𝑎, 𝑏] →

{
[−∞,∞]
[1, 1]

}
for any 𝑎, 𝑏. After unrolling to

a fixed depth, the approximation of the paths not terminating

within the fixed depth is therefore imprecise. For future work,

it would be interesting to improve the bounds in our type

system to provide more information about the distribution

by means of rigorous approximations of the denotation of

the fixpoint in question (i.e. a probabilistic summary of the

fixpoint [46, 50, 63]).

8 Related Work
Interval trace semantics and Interval SPCF. Our inter-

val trace semantics to compute bounds on the denotation is

similar to the semantics introduced by Beutner and Ong [4],

who study an interval approximation to obtain lower bounds
on the termination probability. By contrast, we study the

more challenging problem of bounding the program denota-

tion which requires us to track the weight of an execution,

and to prove that the denotation approximates a Lebesgue in-

tegral, which requires novel proof ideas. Moreover, whereas

the termination probability of a program is always upper

bounded by 1, here we derive both lower and upper bounds.

Probability estimation. Sankaranarayanan et al. [56] in-
troduced a static analysis framework to infer bounds on a

class of definable events in (score-free) probabilistic programs.

The idea of their approach is that if we find a finite set T of

symbolic traces with cumulative probability at least 1 − 𝑐 ,

and a given event 𝜙 occurs with probability at most 𝑏 on the
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traces in T , then 𝜙 occurs with probability at most 𝑏 + 𝑐 on
the entire program. In the presence of conditioning, the prob-

lem becomes vastly more difficult, as the aggregate weight

on the unexplored paths can be unbounded, giving ∞ as the

only derivable upper bound (and therefore also∞ as the best

upper bound on the normalising constant). In order to infer

guaranteed bounds, it is necessary to analyse all paths in
the program, which we accomplish via static analysis and

in particular our interval type system. The approach from

[56] was extended by Albarghouthi et al. [1] to compute the

probability of events defined by arbitrary SMT constraints

but is restricted to score-free and non-recursive programs.

Our interval-based approach, which may be seen as a variant

of theirs, is founded on a complete semantics (Theorem 4.3),

can handle recursive program with (soft) scoring, and is

applicable to a broad class of primitive functions.

Note that we consider programs with soft conditioning
in which scoring cannot be reduced to volume computation

directly.
14
Intuitively, soft conditioning performs a (global)

re-weighting of the set of traces, which cannot be captured by

(local) volume computations. In our interval trace semantics,

we instead track an approximation of the weight along each

interval trace.

Exact inference. There are numerous approaches to infer-

ring the exact denotation of a probabilistic program. Holtzen

et al. [38] introduced an inference method to efficiently com-

pute the denotation of programs with discrete distributions.

By exploiting program structure to factorise inference, their

system Dice can perform exact inference on programs with

hundreds of thousands of random variables. Gehr et al. [26]

introduced PSI, an exact inference system that uses sym-

bolic manipulation and integration. A later extension, 𝜆PSI

[27], adds support for higher-order functions and nested

inference. The PPL Hakaru [47] supports a variety of infer-

ence algorithms on programs with both discrete and con-

tinuous distributions. Using program transformation and

partial evaluation, Hakaru can perform exact inference via

symbolic disintegration [57] on a limited class of programs.

Saad et al. [55] introduced SPPL, a system that can compute

exact answers to a range of probabilistic inference queries,

by translating a restricted class of programs to sum-product

expressions, which are highly effective representations for

inference.

While exact results are obviously desirable, this kind of in-

ference only works for a restricted family of programs: none

of the above exact inference systems allow (unbounded) re-

cursion. Unlike our tool, they are therefore unable to handle,

for instance, the challenging Example 1.1 or the programs in

Fig. 6.

14
For programs including only hard-conditioning (i.e. scoring is only possi-

ble with 0 or 1), the posterior probability of an event 𝜑 can be computed by

dividing the probability of all traces with weight 1 on which 𝜑 holds by the

probability of all traces with weight 1.

Abstract interpretation. There are various approaches
to probabilistic abstract interpretation, so we can only dis-

cuss a selection. Monniaux [44, 45] developed an abstract

domain for (score-free) probabilistic programs given by a

weighted sum of abstract regions. Smith [58] considered

truncated normal distributions as an abstract domain and de-

veloped analyses restricted to score-free programs with only

linear expressions. Extending both approaches to support

soft conditioning is non-trivial as it requires the computation

of integrals on the abstract regions. In our interval-based

semantics, we abstract the concrete traces (by means of inter-

val traces) and not the denotation. This allows us to derive

bounds on the weight along the abstracted paths.

Huang et al. [39] discretise the domain of continuous sam-

ples into interval cubes and derive posterior approximations

on each cube. The resulting approximation converges to the

true posterior (similarly to approximate/stochastic methods)

but does not provide exact/guaranteed bounds and is not

applicable to recursive programs.

Refinement types. Our interval type system (Section 5)

may be viewed as a type system that refines not just the value

of an expression but also its weight [24]. To our knowledge,

no existing type refinement system can bound the weight

of program executions. Moreover, the seamless integration

with our interval trace semantics by design allows for much

cheaper type inference, without resorting to an SMT or Horn

constraint solver. This is a crucial advantage since a typical

GuBPI execution queries the analysis numerous times.

Stochastic methods. A general approach to validating

inference algorithms for a generative Bayesian model is

simulation-based calibration (SBC) [12, 60], discussed in Sec-

tion 7.4. Grosse et al. [36] introduced a method to estimate

the log marginal likelihood of a model by constructing sto-

chastic lower/upper bounds. They show that the true value

can be sandwiched between these two stochastic bounds

with high probability. In closely related work [17, 35], this

was applied to measure the accuracy of approximate proba-

bilistic inference algorithms on a specified dataset. By con-

trast, our bounds are non-stochastic and our method is ap-

plicable to arbitrary programs of a universal PPL.

9 Conclusion
We have studied the problem of inferring guaranteed bounds

on the posterior of programs written in a universal PPL. Our

work is based on the interval trace semantics, and our weight-

aware interval type system gives rise to a tool that can in-

fer useful bounds on the posterior of interesting recursive

programs. This is a capability beyond the reach of existing

methods, such as exact inference. As a method of Bayesian

inference for statistical probabilistic programs, we can view

our framework as occupying a useful middle ground between

approximate stochastic inference and exact inference.
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A Supplementary Material for Section 3
A.1 Intervals as a lattice
Intervals I form a partially ordered set under interval in-

clusion (⊑). We will sometimes need the meet ⊓ and join

⊔ operations, corresponding to the greatest lower bound

and the least upper bound of two intervals. Note that the

meet of two intervals does not exist if the two intervals

are disjoint. Concretely, these two operations are given by

[𝑎, 𝑏] ⊓ [𝑐, 𝑑] := [max(𝑎, 𝑐),min(𝑏, 𝑑)] (if the two intervals

overlap) and [𝑎, 𝑏] ⊔ [𝑐, 𝑑] := [min(𝑎, 𝑐),max(𝑏, 𝑑)].
For some applications (e.g. the interval type system), we

need the interval domain to be a true lattice. To turn I into
a lattice, we add a bottom element ⊥ (signifying an empty

interval). The definition of the meet ⊓ and join ⊔ is extended

in the natural way. The meet ⊓ is extended by defining 𝐼1 ⊓
⊥ = ⊥ ⊓ 𝐼2 = ⊥ and 𝐼1 ⊓ 𝐼2 = ⊥ if the two intervals 𝐼1, 𝐼2 ∈ I
are disjoint. The join ⊔ satisfies 𝐼 ⊔ ⊥ = ⊥ ⊔ 𝐼 = 𝐼 .

A.2 Lifting Functions to Intervals
For constants 𝑐 ∈ R (i.e. nullary functions), for common func-

tions like +, −, ×, | · |,min,max, for monotonically increasing

functions 𝑓↗ : R → R, and for monotonically decreasing

functions 𝑓↘ : R → R, it is easy to describe the interval-

lifted functions +I, −I, ×I, | · |I, min
I
, max

I
, 𝑓 I↗, and 𝑓 I↘:

𝑐I = [𝑐, 𝑐]
−I [𝑥1, 𝑦1] = [−𝑦1,−𝑥1]

| [𝑥1, 𝑦1] |I =
{
[0,max( |𝑥1 |, |𝑦1 |)] if 𝑥1 ≤ 0 ≤ 𝑦1

[min( |𝑥1 |, |𝑦1 |),max( |𝑥1 |, |𝑦1 |)] else

[𝑥1, 𝑦1] +I [𝑥2, 𝑦2] = [𝑥1 + 𝑥2, 𝑦1 + 𝑦2]
[𝑥1, 𝑦1] −I [𝑥2, 𝑦2] = [𝑥1 − 𝑦2, 𝑦1 − 𝑥2]
[𝑥1, 𝑦1] ×I [𝑥2, 𝑦2] = [min(𝑥1𝑥2, 𝑥1𝑦2, 𝑦1𝑥2, 𝑦1𝑦2),

max(𝑥1𝑥2, 𝑥1𝑦2, 𝑦1𝑥2, 𝑦1𝑦2)]
min

I ( [𝑥1, 𝑦1], [𝑥2, 𝑦2]) = [min(𝑥1, 𝑥2),min(𝑦1, 𝑦2)]
max

I ( [𝑥1, 𝑦1], [𝑥𝑛, 𝑦𝑛]) = [max(𝑥1, 𝑥2),max(𝑦1, 𝑦2)]
𝑓 I↗ ( [𝑥1, 𝑦1]) = [𝑓↗ (𝑥1), 𝑓↗ (𝑦1)]

𝑓 I↘ ( [𝑥1, 𝑦1]) = [𝑓↘ (𝑦1), 𝑓↘ (𝑥1)]
where we write 𝑓 (±∞) for lim𝑥→±∞ 𝑓 (𝑥) ∈ R∞, respec-
tively.

A.3 Properties of Interval Reduction
We can define a refinement relation𝑀 ⊳ 𝑀 ′

(“𝑀 refines𝑀 ′
”)

between a standard term 𝑀 and an interval term 𝑀 ′
, if 𝑀

is obtained from𝑀 ′
by replacing every occurrence of [𝑎, 𝑏]

with some 𝑟 ∈ [𝑎, 𝑏].

Lemma 3.1. Let ⊢ 𝑃 : R be a program. For any interval trace
𝒕 and concrete trace 𝒔 ⊳ 𝒕 , we have wt𝑃 (𝒔) ∈ wtI

𝑃
(𝒕) and

val𝑃 (𝒔) ∈ valI𝑃 (𝒕) (provided val𝑃 (𝒔) is defined).

Proof. If the interval reduction →I gets stuck, wtI𝑃 is [0,∞]
and valI𝑃 is [−∞,∞], so the claim is certainly true. Otherwise,

for each (𝑀I, 𝒕,𝑤I) →I (𝑀 ′
I , 𝒕

′,𝑤 ′
I ) reduction step, we can do

a reduction step (𝑀, 𝒔,𝑤) → (𝑀 ′, 𝒔 ′,𝑤 ′) where𝑀 ′ ⊳ 𝑀 ′
I and

𝑤 ′ ∈ 𝑤 ′
I , and 𝒔 ′ ⊳ 𝒕 ′ if 𝑀 ⊳ 𝑀I, 𝑤 ∈ 𝑤I, and 𝒔 ⊳ 𝒕 . Since the

reduction doesn’t get stuck, we end up with a value 𝑟 ⊳ [𝑎, 𝑏],
so val𝑃 (𝒔) = 𝑟 ∈ [𝑎, 𝑏] = valI𝑃 (𝒕). □

A.4 Additional Possible Reduction Rules
The interval semantics as presented has the unfortunate

property that even a simple program like

if (sample, score(0), score(1))
requires infinitely many interval traces to achieve a finite

upper bound. The reason is that the right branch score(1) is
taken if the sampled value is in the open interval (0, 1]. To ap-
proximate this using closed intervals [𝑎, 𝑏] that our analysis
supports, we need infinitelymany intervals, e.g. {[2−𝑛−1, 2−𝑛] |
𝑛 ∈ N}. Adding (half-)open intervals to the semantics would

solve this specific problem, but not more general ones, where

the guard condition is for example

sample − sample ≤ 0.

In that case, we have to approximate the set {(𝑥,𝑦) ∈ [0, 1]2 |
𝑥 ≤ 𝑦}. For the lower bounds, that is not an issue, but for the

upper bounds, we need an infinite number of interval traces

again. We would like to use the interval traces ⟨[0, 1
2
], [0, 1

2
]⟩

and ⟨[ 1
2
, 1], [0, 1]⟩ to cover this set, but the reduction gets

stuck on them because it is not clear which branch should

be taken.

To remedy this, we could add the following two rules.

𝑎 ≤ 0 < 𝑏

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑁, 𝒕,𝑤 ×I [0, 1])

𝑎 ≤ 0 < 𝑏

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑃, 𝒕,𝑤 ×I [0, 1])
They basically express that if the interval bounds are not

precise enough to decide what branch to take, we can take

both, but have to allow the weight to be zero because it’s not

guaranteed that the taken branch can actually happen. This

change can only improve the upper bounds, not the lower

bounds because the lower bound on each weight is zero if

the additional rules are used. Then the definition of upper

bound can be modified in the following way:

upperBdT
𝑃 (𝑈 ) :=

∑
𝒕 ∈T

∑
(𝑃,𝒕, [1,1])→I

( [𝑎,𝑏 ], ⟨⟩, [𝑤1,𝑤2 ])

vol(𝒕) ·𝑤2 ·
[
[𝑎, 𝑏] ∩𝑈 ≠ ∅

]
This is the strategy we use for our implementation and

is a natural extension of the existing semantics: it requires

very few changes to the soundness and completeness proofs.

A downside of the previous approach is that the bounds

are not always very tight: for the term if (. . . ) score(50)
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((𝜆𝑥.M)V, 𝑛,Δ,Ξ) { (M[V/𝑥], 𝑛,Δ,Ξ)

(score(V), 𝑛,Δ,Ξ) { (V, 𝑛,Δ ∪ {V ≥ 0},Ξ ∪ {V})

((𝜇𝜑𝑥 .M)V, 𝑛,Δ,Ξ) { (M[V/𝑥, (𝜇𝜑𝑥 .M)/𝜑], 𝑛,Δ,Ξ)

(sample, 𝑛,Δ,Ξ) { (𝛼𝑛+1, 𝑛 + 1,Δ,Ξ)

(if (V,N ,P)), 𝑛,Δ,Ξ) { (N , 𝑛,Δ ∪ {V ≤ 0},Ξ)

(if (V,N ,P)), 𝑛,Δ,Ξ) { (P, 𝑛,Δ ∪ {V > 0},Ξ)
(R, 𝑛,Δ,Ξ) { (M, 𝑛′,Δ′,Ξ′)

(E[R], 𝑛,Δ,Ξ) { (E[M], 𝑛′,Δ′,Ξ′)

Figure 8. Reduction rules for symbolic execution

else score(100), it returns bounds [0, 150] instead of [50, 100].
To improve this, we could omit the multiplication with [0, 1].

𝑎 ≤ 0 < 𝑏

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑁, 𝒕,𝑤)
𝑎 ≤ 0 < 𝑏

(if ( [𝑎, 𝑏], 𝑁 , 𝑃), 𝒕,𝑤) →I (𝑃, 𝒕,𝑤)
However, this complicates the equations of our bounds. With

this semantics, we have to compute minima and suprema

instead of a simple sum:

lowerBdT
𝑃 (𝑈 ) :=

∑
𝒕 ∈T

min

(𝑃,𝒕, [1,1])→I
( [𝑎,𝑏 ], ⟨⟩, [𝑤1,𝑤2 ])

vol(𝒕) ·𝑤1 ·
[
[𝑎, 𝑏] ⊆ 𝑈

]
upperBdT

𝑃 (𝑈 ) :=
∑
𝒕 ∈T

sup

(𝑃,𝒕, [1,1])→I
( [𝑎,𝑏 ], ⟨⟩, [𝑤1,𝑤2 ])

vol(𝒕) ·𝑤2 ·
[
[𝑎, 𝑏] ∩𝑈 ≠ ∅

]
This is harder to implement because the sums cannot be

computed incrementally, but many temporary results have

to be kept in memory to compute the minima and suprema.

Proving soundness and completeness for this would require

more substantial changes to the proofs.

B Symbolic Execution
In this section we formally introduce stochastic symbolic

execution. We make use of this form of symbolic execution

in two separate ways. First, our completeness proof hinges

on guarantees provided by the symbolic execution in order

to identify a suitable set of interval traces. Second, our tool

GuBPI relies on the symbolic execution as a first step in the

program analysis, in order to identify relevant paths and in-

dependent subexpressions, and to avoid repeated evaluation

in a small-step semantics.

High-level idea. The overarching idea of symbolic execu-

tion is to postpone the evaluation of sample expressions and
instead use a sample variable to symbolically represent its

outcome. As a consequence, branching and scoring steps can-

not be executed concretely, so we record them symbolically

instead.

Symbolic terms. To postpone concrete sample decisions

we introduce sample variables 𝛼1, 𝛼2, . . . into our language.

We then define symbolic terms and symbolic values by extend-
ing interval terms and values by adding two new constructs:

every sample variable 𝛼 𝑗 is a symbolic value and for every

primitive function 𝑓 and symbolic values V1, . . . ,V|𝑓 | , the
symbolic term 𝑓 (V1, . . . ,V|𝑓 |) is a symbolic value, denoting

a function application that is postponed until all sample vari-

ables are instantiated.We denote symbolic terms byM,N ,P
and symbolic values by V,W. Formally we define

V := 𝑥 | 𝑟 | 𝜆𝑥.M | 𝜇𝜑𝑥 .M | 𝛼𝑖 | 𝑓 (V1, . . . ,V|𝑓 |)
M,N ,P := V | MN | if (M,N ,P) | 𝑓 (M1, . . . ,M |𝑓 |)

| sample | score(M)
The definition of redex and evaluation context extends natu-

rally (recall that we regard 𝛼 𝑗 as a value).

Symbolic execution. A symbolic constraint is a pair (V ⊲⊳

𝑟 ) where V is a symbolic value, ⊲⊳ ∈ {≤, <, ≥, >} and 𝑟 ∈ R.
A symbolic configuration has the form 𝜓 = (M, 𝑛,Δ,Ξ)
whereM is a symbolic term,𝑛 ∈ N a natural number (used to

obtain fresh sample variables),Δ a set of symbolic constraints

(which track the symbolic conditions on the current execu-

tion path), and Ξ is a set of symbolic values (which records

all symbolic values scored on the current path). When exe-

cuting symbolically: (1) we evaluate each sample to a fresh

sample variable, (2) we postpone function application, (3) for

each conditional, we explore both branches (our reduction

is nondeterministic) and record the symbolic inequalities

that must hold along the current path, and (4) we record the

symbolic values that we scored with. We give the reduction

rules in Fig. 8.

We call a tuple Ψ = (V, 𝑛,Δ,Ξ) (a symbolic configuration

where the symbolic term is a value) a symbolic path. For
a symbolic configuration 𝜓 , we write symPaths(𝜓 ) for the
set of symbolic paths reached when evaluating from𝜓 . Note

that symPaths(𝜓 ) is countable.
Let V be a symbolic value of type R (no 𝜆-abstraction

or fixed point) with sample variables within {𝛼1, . . . , 𝛼𝑛}.
For a trace 𝒔 = ⟨𝑟1, . . . , 𝑟𝑛⟩ ∈ [0, 1]𝑛 , we define V[𝒔/𝛼] as
the value (in R) obtained by replacing the sample variables

in 𝛼 with 𝒔 and evaluate the postponed primitive function

applications. For a symbolic path Ψ = (V, 𝑛,Δ,Ξ), we define
JΨK(𝑈 ) as∫

[0,1]𝑛

[
V[𝒔/𝛼] ∈ 𝑈

] ∏
C⊲⊳𝑟 ∈Δ

[
C[𝒔/𝛼] ⊲⊳ 𝑟

] ∏
W∈Ξ

W[𝒔/𝛼] d𝒔 .

Solution to symbolic constraints. To simplify notation

(and avoid extensive use of Iverson brackets) we introduce

notation for the set of traces that satisfy a set of symbolic con-

straints. Given a set of symbolic constraints Δ with sample
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variables contained in {𝛼1, . . . , 𝛼𝑛} we define
Sat𝑛 (Δ) :=

⋂
(V⊲⊳𝑟 ) ∈Δ

{𝒔 ∈ [0, 1]𝑛 | V[𝒔/𝛼] ⊲⊳ 𝑟 }

as the set of actual values for the sample variables that satisfy

all constraints. It follows immediately from the definitions

that we can replace the Iverson brackets in JΨK by directly

restricting the integral to the traces in Sat𝑛 (Δ).
Lemma B.1. For any symbolic path (V, 𝑛,Δ,Ξ) and any
𝑈 ∈ ΣR we have

J(V, 𝑛,Δ,Ξ)K(𝑈 ) =
∫
Sat𝑛 (Δ)

[V[𝒔/𝛼] ∈ 𝑈 ]
∏
W∈Ξ

W[𝒔/𝛼] d𝒔 .

Correctness of symbolic execution. We can now estab-

lish a correspondence between symbolic execution and the

ordinary reduction. If we wish to symbolically analyse a

term 𝑃 , we consider the (symbolic) reductions starting from

(𝑃, 0, ∅, ∅), resulting in the symbolic paths symPaths(𝑃, 0, ∅, ∅).
Lemma B.2. Let ⊢ 𝑃 : R and suppose we have (V, 𝑛,Δ,Ξ) ∈
symPaths(𝑃, 0, ∅, ∅), where 𝑃 is interpreted as a symbolic term.
Then for any 𝒔 ∈ 𝑆𝑎𝑡𝑛 (Δ), we have

(𝑃, 𝒔, 1) →∗ (V[𝒔/𝛼], ⟨⟩,
∏
W∈Ξ

W[𝒔/𝛼]).

Proof. A similar proof can be found in [41, Theorem 1]. □

Lemma B.3. Let ⊢ 𝑃 : R and suppose (𝑃, 𝒔, 1) →∗ (𝑟, ⟨⟩,𝑤)
for some 𝑟 ∈ R. Then there exists a unique (V, 𝑛,Δ,Ξ) ∈
symPaths(𝑃, 0, ∅, ∅) such that 𝒔 ∈ 𝑆𝑎𝑡𝑛 (Δ). For this unique
symbolic path we have𝑤 =

∏
W∈Ξ W[𝒔/𝛼] and 𝑟 = V[𝒔/𝛼].

Proof sketch. Choose the same branches in the{-reduction

of 𝑃 as in its →-reduction. Then it is straightforward to see

that this correspondence holds at every symbolic reduction

step: if (𝑃, 0, ∅, ∅) {∗ (P ′, 𝑛,Δ,Ξ) then the corresponding

→-reduction steps yield (𝑃, 𝒔𝒔 ′, 1) →∗ (𝑃 ′, 𝒔 ′,𝑤) where 𝒔 has
length 𝑛, 𝑃 ′

is P ′[𝒔/𝛼] (after evaluating delayed primitve

function applications), Δ records the guards C[𝒔/𝛼] ≤ 0 or

C[𝒔/𝛼] > 0 that need to hold for the trace 𝒔, and finally, the

weight𝑤 is given by

∏
W∈Ξ W[𝒔/𝛼] at any point. □

Theorem 6.1. Let ⊢ 𝑃 : R be a program and𝑈 ∈ ΣR. Then

J𝑃K(𝑈 ) = ∑
Ψ∈symPaths (𝑃,0,∅,∅) JΨK(𝑈 ).

Proof.

J𝑃K(𝑈 ) =
∑
𝑛∈N

∫
[0,1]𝑛

[val𝑃 (𝒔) ∈ 𝑈 ]wt𝑃 (𝒔) d𝒔

=
∑
𝑛∈N

∫
[0,1]𝑛

∑
(V,𝑛,Δ,Ξ)(

[𝒔 ∈ Sat𝑛 (Δ)] [V[𝒔/𝛼] ∈ 𝑈 ]
∏
W∈Ξ

W[𝒔/𝛼] d𝒔
)

=
∑

(V,𝑛,Δ,Ξ)

∫
Sat𝑛 (Δ)

[V[𝒔/𝛼] ∈ 𝑈 ]
∏
W∈Ξ

W[𝒔/𝛼] d𝒔

=
∑

(V,𝑛,Δ,Ξ)
J(V, 𝑛,Δ,Ξ)K(𝑈 )

where the sum ranges over symbolic paths (V, 𝑛,Δ,Ξ) ∈
symPaths(𝑃, 0, ∅, ∅). The first equality is by definition, the

second one by Lemmas B.2 and B.3, the third by noting that

Sat𝑛 (Δ) ⊆ [0, 1]𝑛 and exchanging the infinite sum and inte-

gral (which is allowed because everything is nonnegative)

and the fourth by Lemma B.1. □

C Supplementary Material for Section 4
C.1 Infinite Trace Semantics
A convenient alternative to the (finite) trace semantics is

using infinite traces T∞ := [0, 1]N with a suitable 𝜎-algebra

and measure 𝜇T∞ [16, 40]. The 𝜎-algebra on T∞ is defined as

the smallest 𝜎-algebra that contains all sets 𝑈 × T∞ where

𝑈 ∈ Σ [0,1]𝑛 for some 𝑛 ∈ N. The measure 𝜇T∞ is the unique

measure with 𝜇T∞ (𝑈 × T∞) = 𝜆𝑛 (𝑈 ) for𝑈 ∈ Σ [0,1]𝑛 . We use

the symbol 𝒖 for an infinite trace in T∞. For a finite trace 𝒔
and infinite trace 𝒖 wewrite 𝒔𝒖 ∈ T∞ for their concatenation.

For any infinite trace 𝒖 ∈ T∞, there is at most one prefix

𝒔 ∈ T with wt𝑃 (𝒔) > 0 since the reduction is deterministic.

We can therefore define wt∞
𝑃
(𝒖) := wt𝑃 (𝒔) and val∞𝑃 (𝒖) :=

val𝑃 (𝒔) if such a prefix 𝒔 exists, andwt∞𝑃 (𝒖) := 0 and val∞𝑃 (𝒖)
is undefined otherwise. The infinite trace semantics of a term

is then defined as

J𝑃K(𝑈 ) :=
∫
(val∞𝑃 )−1 (𝑈 )

wt∞𝑃 (𝒖) 𝜇T∞ (d𝒖).

Lemma C.1. The finite and infinite trace semantics agree,
that is:∫

(val𝑃 )−1 (𝑈 )
wt𝑃 (𝒔) 𝜇T (d𝒔) =

∫
(val∞𝑃 )−1 (𝑈 )

wt∞𝑃 (𝒖) 𝜇T∞ (d𝒖).

Proof. Observe that val∞𝑃 (𝒔𝒖) = val𝑃 (𝒔) and wt∞
𝑃
(𝒔𝒖) =

wt𝑃 (𝒔) for all 𝒖 ∈ T∞ if wt𝑃 (𝒔) > 0. Then we get:∫
(val𝑃 )−1 (𝑈 )

wt𝑃 (𝒔) 𝜇T (d𝒔)

=

∫
(wt𝑃 )−1 (R>0)

[val𝑃 (𝒔) ∈ 𝑈 ]wt𝑃 (𝒔)
∫
T∞

𝜇T∞ (d𝒖)𝜇T (d𝒔)

=

∫
(wt𝑃 )−1 (R>0)

∫
T∞

[val∞𝑃 (𝒔𝒖) ∈ 𝑈 ]wt∞𝑃 (𝒔𝒖)𝜇T∞ (d𝒖)𝜇T (d𝒔)

=

∫
(wt𝑃 )−1 (R>0)×T∞

[val∞𝑃 (𝒖) ∈ 𝑈 ]wt∞𝑃 (𝒖)𝜇T∞ (d𝒖)

=

∫
(val∞𝑃 )−1 (𝑈 )

wt∞𝑃 (𝒖)𝜇T∞ (d𝒖)

where we used the fact that the sets {𝒔} × T∞ are disjoint

for different 𝒔 ∈ wt−1
𝑃
(R>0) because otherwise we would

be able to find a trace 𝒔 as a prefix of 𝒔 ′ and both having

positive weight, which is impossible due to the deterministic

reduction. Therefore (wt𝑃 )−1 (R>0) × T∞ = (wt∞
𝑃
)−1 (R>0)
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and everything works as desired. Note that the second to

last equality follows from Fubini’s theorem and the fact that

the product measure of 𝜇T and 𝜇T∞ is 𝜇T∞ again. □

C.2 Exhaustivity and Soundness
Example C.1 (more examples of exhaustive sets). Here are

more examples and counterexamples for exhaustivity.

(i) {⟨⟩} is an (uninteresting) exhaustive set and only use-

ful for deterministic programs.

(ii) {⟨[2−𝑛−1, 2−𝑛]⟩ | 𝑛 ∈ N} is exhaustive because only
the trace ⟨0⟩ (with measure 0) is not covered.

(iii) Let 𝑎𝑛 ≥ 0 be a converging series, i.e.

∑𝑛
𝑖=1 𝑎𝑛 < ∞,

for example 𝑎𝑛 = 𝑛−2. Define

T := {⟨[0, 𝑒−𝑎1 ], . . . , [0, 𝑒−𝑎𝑛 ], [𝑒−𝑎𝑛+1 , 1]⟩ | 𝑛 ∈ N}.
This is not an exhaustive set since it doesn’t cover any of the

traces in

[0, 𝑒−𝑎1 ) × [0, 𝑒−𝑎2 , 1) × · · ·
which has measure

∏∞
𝑖=1 𝑒

−𝑎𝑖 = exp

(
−∑∞

𝑖=1 𝑎𝑖
)
> 0.

We also note that exhaustivity can be expressed just in

terms of finite traces as well, at the cost of amore complicated

definition.

Lemma C.2. A set of interval traces T is exhaustive if and
only if

𝜇T
©­«[0, 1]𝑛 \ ©­«

⋃
⟨𝐼1,...,𝐼𝑚 ⟩∈T,𝑚≤𝑛

𝐼1 × · · · × 𝐼𝑚 × [0, 1]𝑛−𝑚ª®¬ª®¬ → 0

as 𝑛 → ∞.

Proof. Let 𝑆 := T∞ \ ⋃
𝒕 ∈T cover (𝒕). By the definition of ex-

haustivity, 𝜇T∞ (𝑆) = 0. Let

𝑆𝑛 = [0, 1]𝑛 \ ©­«
⋃

⟨𝐼1,...,𝐼𝑚 ⟩∈T,𝑚≤𝑛
𝐼1 × · · · × 𝐼𝑚 × [0, 1]𝑛−𝑚ª®¬ .

It’s easy to see that 𝑆 =
⋂∞

𝑛=0 𝑆𝑛 × T∞ where 𝑆𝑛 × T∞ is a de-

creasing sequence of sets: 𝑆1×T∞ ⊇ 𝑆2×T∞ ⊇ · · · . Sincemea-

sures are continuous from above, we have lim𝑛→∞ 𝜇T (𝑆𝑛) =
lim𝑛→∞ 𝜇T∞ (𝑆𝑛 × T∞) = 𝜇T∞ (𝑆) = 0, as desired. □

The following lemma establishes a correspondence be-

tween infinite trace semantics and interval trace semantics.

Lemma C.3. For any interval trace 𝒕 and infinite trace 𝒔∞
with a prefix 𝒔 such that 𝒔 ⊳ 𝒕 , we have wt∞

𝑃
(𝒔∞) ∈ wtI

𝑃
(𝒕)

and val∞𝑃 (𝒔∞) ∈ valI𝑃 (𝒕).

Proof. Follows directly from the definition of infinite trace

semantics and Lemma 3.1. □

Using the previous results, we can prove soundness of

upper bounds.

Theorem 4.2 (Sound upper bounds). Let T be a countable
and exhaustive set of interval traces and ⊢ 𝑃 : R a program.
Then J𝑃K ≤ upperBdT

𝑃
.

Proof. For any𝑈 ∈ ΣR, we have

upperBdT
𝑃 (𝑈 )

=
∑
𝒕 ∈T

vol(𝒕) (supwtI𝑃 (𝒕)) [val
I
𝑃 (𝒕) ∩𝑈 ≠ ∅]

=
∑
𝒕 ∈T

∫
L𝒕M

(supwtI𝑃 (𝒕)) [val
I
𝑃 (𝒕) ∩𝑈 ≠ ∅] d𝒔

≥
∑
𝒕 ∈T

∫
L𝒕M

∫
T∞

wt∞𝑃 (𝒔𝒖) [val∞𝑃 (𝒔𝒖) ∈ 𝑈 ] d𝒖 d𝒔 (4)

≥
∫

⋃
𝒕∈TL𝒕M×T∞

wt∞𝑃 (𝒖) [val∞𝑃 (𝒖) ∈ 𝑈 ] d𝒔

≥
∫
T∞

wt∞𝑃 (𝒖) [val∞𝑃 (𝒖) ∈ 𝑈 ] d𝒖 (5)

= J𝑃K(𝑈 ) (6)

where Eq. (4) follows from Lemma C.3, Eq. (5) from exhaus-

tivity and Eq. (6) from Lemma C.1. □

C.3 Assumptions for Completeness
Remarks on Assumption 1. We can formally express

Assumption 1 from Section 4 about a given program ⊢ 𝑃 : R
as follows. For each symbolic path Ψ = (V, 𝑛,Δ,Ξ), we
require that V , each C with C ⊲⊳ 0 ∈ Δ, and each W ∈ Ξ
contain each sample variable 𝛼𝑖 at most once.

Example C.2. The pedestrian example (Example 1.1) satis-

fies Assumption 1 because the symbolic paths have the form

Ψ = (V, 𝑛,Δ,Ξ) with:
V = 3𝛼1

𝑛 = 2𝑘 + 1

Δ = {𝛼3 − 1

2
⊲⊳ 0, 𝛼5 − 1

2
⊲⊳ 0, . . . , 𝛼2𝑘+1 − 1

2
⊲⊳ 0}

∪ {3𝛼1 > 0,

3𝛼1 ± 𝛼2 > 0,

. . . ,

3𝛼1 ± 𝛼2 ± 𝛼4 · · · ± 𝛼2𝑘−2 > 0,

3𝛼1 ± 𝛼2 ± 𝛼4 · · · ± 𝛼2𝑘 ≤ 0}
Ξ = {pdf

Normal(1.1,0.1) (𝛼2 + 𝛼4 + · · · + 𝛼2𝑘 )}
As we can see, none of the symbolic values contains a sample

variable twice, so the assumption is satisfied.

Remarks on Assumption 2. We first prove the sufficient

condition for interval separability from Section 4.2.

Lemma C.4. If a function 𝑓 : R𝑛 → R is boxwise contin-
uous and preimages of points are null sets then 𝑓 is interval
separable.
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Proof. We decompose 𝑓 −1 ( [𝑎, 𝑏]) = 𝑓 −1 ((𝑎, 𝑏))∪ 𝑓 −1 ({𝑎, 𝑏})
and deal with the former set first. By boxwise continuity,

𝑓 =
⋃

𝑖 𝑓 |𝐵𝑖
where

⋃
𝑖 𝐵𝑖 = R

𝑛
and each 𝑓 |𝐵𝑖

is continuous

on 𝐵𝑖 . To show that the preimage 𝑓 −1 ((𝑎, 𝑏)) can be tightly

approximated by a countable set of boxes, it suffices to show

this for each (𝑓 |𝐵𝑖
)−1 ((𝑎, 𝑏)). This set is open in 𝐵𝑖 by con-

tinuity of 𝑓 |𝐵𝑖
, so it can be written as a countable union of

boxes (e.g. by taking a box within 𝐵𝑖 around each rational

point, which exists because it’s an open set). By the assump-

tion, the preimage 𝑓 −1 ({𝑎, 𝑏}) is a null set. Hence 𝑓 −1 ( [𝑎, 𝑏])
can be approximated by a null set. □

Note that a composition of interval separable functions

need not be interval separable. This is an incorrect assump-

tion made in the completeness proof of [4]. (To fix their

Theorem 3.8, one needs to make the additional assumption

that the set of primitive functions be closed under compo-

sition.) To see this, let 𝑓 , 𝑔 : R → R be interval separable

functions and 𝐼 an interval. By definition, there are intervals

𝐵𝑖 such that
⋃

𝑖 𝐵𝑖∪𝑁 = 𝑓 −1 (𝐼 ) where𝑁 is a null set. Then by

interval separability, the preimage 𝑔−1 (⋃𝑖 𝐵𝑖 ) can be tightly

approximated by interals 𝐵′
𝑗 , but the preimage 𝑔−1 (𝑁 ) need

not be a null set. It is also not clear at all whether one can

approximate the preimage (𝑓 ◦𝑔)−1 (𝐼 ) tightly using intervals
without further restrictions on 𝑓 and 𝑔. For this reason, we

require the assumption that the set of primitive functions be

closed under composition.

It is not immediately obvious that such a set of functions

exists. One example is given by the following. A function

𝑓 : R𝑛 → R is called a submersion if it is continuously

differentiable and its gradient is nonzero everywhere.

Lemma C.5. The set Fsubm of submersions is closed under
composition and each of its functions is boxwise continuous
and interval separable.

Proof. Boxwise continuity is obvious given that the functions
are even continuously differentiable. For interval separabil-

ity, we use Lemma C.4. Let 𝑓 : R𝑛 → R ∈ Fsubm. Since 𝑓

is a submersion, the preimage 𝑓 −1 (𝑥) of any point 𝑥 ∈ R
is an (𝑛 − 1)-dimensional submanifold of R𝑛 by the preim-

age theorem (a variation of the implicit function theorem).

Submanifolds of codimension > 1 have measure zero. (This

well-known fact can be shown by writing the submanifold as

a countable union of graphs and applying Fubini’s theorem

to each of them.) Therefore, the lemma applies.

For closure under composition, let 𝑓 : R𝑚 → R and 𝑓𝑖 :

R𝑛𝑖 → R for 𝑖 ∈ {1, . . . ,𝑚}, all in Fsubm. The composition

𝑔 := 𝑓 ◦ (𝑓1 × · · · × 𝑓𝑚) is clearly𝐶1
again, so we just have to

check the submersion property. By the chain rule, we find

that the gradient of the composition

∇𝑔(𝑥1, . . . , 𝑥𝑚) =
©­­«
𝜕1 𝑓 (𝑓1 (𝑥1), . . . , 𝑓𝑚 (𝑥𝑚)) · ∇𝑓1 (𝑥1)

...

𝜕𝑚 𝑓 (𝑓1 (𝑥1), . . . , 𝑓𝑚 (𝑥𝑚)) · ∇𝑓𝑚 (𝑥𝑚)

ª®®¬

is nonzero because at least one of the 𝜕𝑖 𝑓 is nonzero and

∇𝑓𝑖 (𝑥𝑖 ) ≠ 0 by assumption. Hence the composition is a

submersion again. □

Unfortunately, the set of submersions does not contain

constant functions. This is a problem because then it is not

guaranteed that partially applying a primitive function to a

constant is still an admissible primitive function. (For exam-

ple, this would break Lemma C.8.) Hence we need to assume

that all constant functions be primitive functions. Luckily, the
set Fsubm of submersions can be easily extended to accom-

modate this.

LemmaC.6. LetF ∗
subm be the set of functions 𝑓 : R𝑛 → R (for

all 𝑛 ∈ N) such that whenever the partial derivative 𝜕𝑖 𝑓 (𝑥) is
zero for some 𝑖 ∈ {1, . . . , 𝑛} and 𝑥 ∈ R𝑛 then 𝑓 is constant in its
𝑖-th argument, i.e. there is a function 𝑓 ∗ : R𝑛−1 → R such that
𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑓 ∗ (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . 𝑥𝑛). This set satisfies
all the assumptions about sets of primitive functions: it is closed
under composition, contains all constant functions, and all its
functions are boxwise continuous and interval separable.

Proof. Boxwise continuity is obvious given that the functions
are even continuously differentiable. Similarly, it is clear that

F ∗
subm contains all constant functions.

For interval separability, let 𝑓 : R𝑛 → R ∈ F ∗
subm and 𝐽 ⊆

{1, . . . , 𝑛} be the set of indices in which 𝑓 is not constant, and

𝐽 ′ its complement. Hence there is a submersion 𝑓𝐽 : R
| 𝐽 | → R

such that 𝑓 (𝑥) = 𝑓𝐽 (𝑥 𝐽 ) where 𝑥 𝐽 stands for the vector of
coordinates of 𝑥 with index in 𝐽 . The preimage of 𝑓 −1 (𝑈 ) ⊆
R | 𝐽 |

of any set𝑈 ⊆ R can be tightly approximated by boxes

if and only if 𝑓 −1
𝐽

(𝑈 ) can because 𝑓 −1 (𝑈 ) is a Cartesian

product of 𝑓 −1
𝐽

(𝑈 ) and R | 𝐽 ′ |
. Since 𝑓𝐽 is interval separable by

the previous lemma, this shows that 𝑓 is as well.

For closure under composition, let 𝑓 : R𝑚 → R and 𝑓𝑖 :

R𝑛𝑖 → R for 𝑖 ∈ {1, . . . ,𝑚}, all in F ∗
subm. The composition

𝑔 := 𝑓 ◦ (𝑓1 × · · · × 𝑓𝑚) is clearly 𝐶1
again, so we just have

to check the property of the partial derivatives. By the chain

rule, the partial derivatives of the composition are

𝜕𝑖𝑔(𝑥1, . . . , 𝑥𝑚) = 𝜕𝑗 𝑓 (𝑓1 (𝑥1), . . . , 𝑓𝑚 (𝑥𝑚))𝜕𝑘 𝑓𝑗 (𝑥 𝑗1, . . . , 𝑥 𝑗𝑛 𝑗
)

for some 𝑗 ∈ {1, . . .𝑚} and 𝑘 ∈ {1, . . . 𝑛 𝑗 }, and for all 𝑥1 ∈
R𝑛1 , . . . , 𝑥𝑚 ∈ R𝑛𝑚 . So if this partial derivative is zero, there

are two cases. First, if 𝜕𝑗 𝑓 (𝑓1 (𝑥1), . . . , 𝑓𝑚 (𝑥𝑚)) = 0 then 𝑓

must be constant in its 𝑗-th argument (because 𝑓 ∈ F ∗
subm)

and thus 𝑔 is constant in 𝑥 𝑗 , and in particular the 𝑖-th argu-

ment (which is an entry of𝑥 𝑗 ). Second, if 𝜕𝑘 𝑓𝑗 (𝑥 𝑗1, . . . , 𝑥 𝑗𝑛 𝑗
) =

0 then 𝑓𝑗 must be constant in its 𝑘-th argument (because

𝑓𝑗 ∈ F ∗
subm) and thus 𝑔 is constant in its corresponding 𝑖-th

argument as well. This proves 𝑔 ∈ F ∗
subm, as desired. □

Note that exp, sinh, arctan, 𝑛-th roots for 𝑛 odd, and all

linear functions are in F ∗
subm. So this is a useful set of prim-

itive functions already. Unfortunately, it does not include
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multiplication because the gradient of (𝑥,𝑦) ↦→ 𝑥𝑦 is zero at

(0, 0). To fix this issue, we need to restrict the domain.
15

For simplicity, we required primitive functions to be de-

fined on all of R𝑛 . Suppose we allow for primitive func-

tions to be defined only on an open subset of R𝑛 , and ap-

plying them to a value outside their domain is disallowed

in SPCF programs. Then we can also include multiplication

(on R2 \ {(0, 0)}), logarithms (on (0,∞)), non-constant uni-
variate polynomials (on the complement of their stationary

points), quantile functions of continuous distributions with

nonzero density (on (0, 1)), and probability density functions
(on the complement of their stationary points). The fact that

some points in the domain are missing is inconvenient for

functions that can be continuously extended to the these

points, but one can work around this in a program by check-

ing for the points that are not in the domain and returning

the function values as constants for those cases.

C.4 Completeness Proof
This section uses the definitions of boxwise continuity and

interval separability from Section 4.2. As discussed there, we

assume that for each symbolic path Ψ = (V, 𝑛,Δ,Ξ), we
have that V , each C with C ⊲⊳ 0 ∈ Δ, and each W ∈ Ξ
contains each sample variable 𝛼𝑖 at most once (Assumption

1). We also assume that the primitive functions are boxwise

continuous, interval separable and closed under composition

(Assumption 2). Furthermore, we say thatT is a subdivision
of 𝒕 if T is compatible and

⋃
𝒕 ′∈TL𝒕 ′M = L𝒕M.

Theorem 4.3 (Completeness of interval approximations).
Let 𝐼 ∈ I and ⊢ 𝑃 : R be an almost surely terminating program
satisfying the two assumptions discussed above. Then, for all
𝜖 > 0, there is a countable set of interval traces T ⊆ TI that is
compatible and exhaustive such that

upperBdT
𝑃
(𝐼 ) − 𝜖 ≤ J𝑃K(𝐼 ) ≤ lowerBdT

𝑃
(𝐼 ) + 𝜖.

Proof. First, we give a brief outline of how the proof works.

The idea is to cover {𝒔 ∈ T | val𝑃 (𝒔) ∈ 𝐼 } using boxes

(interval traces). We can achieve this using symbolic execu-

tion: for a fixed path through the program, the result value

is just a composition of primitive functions applied to the

samples. Similarly, the weight function is a product of such

functions, hence boxwise continuous. By passing to smaller

boxes, we can assume that it is continuous on each box. In

order to approximate the integral of the weight function, we

use Riemann sums (as used in the definition of the Riemann

15
Handling these issues at the level of primitive functions directly (without

restricting the domain) seems challenging: even if a function has only

one point with zero gradient, e.g. multiplication, its preimage under other

primitive functions can become very complicated. We tried to handle this by

allowing the primitive functions to be submersions except on a null set given

by a union of lower-dimensional manifolds. However, the preimages of such

manifolds need not be manifolds again. Hence it seems difficult to come

up with a broader class of primitive functions satisfying the assumptions

without restricting the domain.

integral). We partition the domain into smaller and smaller

boxes such that the lower bound and the upper bound of the

weight function come arbitrarily close (by continuity). Then

by properties of the Riemann integral, the bounds arising

from the interval traces representing the boxes in this parti-

tion converge to the desired integral of the weight function.

The details of the proof are as follows.

Step 1: approximating the branching inequalities. Let

Ψ = (V, 𝑛,Δ,Ξ) a symbolic path of 𝑃 . To find a countable set

TΨ ⊆ TI such that

⋃
𝒕 ∈TΨL𝒕M ⋐ Sat𝑛 (Δ). Note that Sat𝑛 (Δ)

is a finite intersection of sets of the form {𝒔 ∈ [0, 1]𝑛 |
C[𝒔/𝛼] ⊲⊳ 0} where ⊲⊳∈ {≤, >}. In the ≤ case, we can write

this constraint as C[𝒔/𝛼] ∈ ⋃
𝑛∈N [−𝑛, 0] and in the > case

as C[𝒔/𝛼] ∈ ⋃
𝑛∈N [1/𝑛, 𝑛]. By applying Lemma C.8 to each

of the compact intervals in these unions, we obtain a count-

able union of boxes that is a tight subset of {𝒔 ∈ [0, 1]𝑛 |
C[𝒔/𝛼] ⊲⊳ 0}. Since the intersection of two boxes is a box

and since Sat𝑛 (Δ) is a finite intersection of such countable

unions of boxes, it can be rewritten as a countable union of

boxes. This yields TΨ, such that

⋃
𝒕 ∈TΨL𝒕M ⋐ Sat𝑛 (Δ).

Step 2: handling the result value. By applying Lemma C.8

and intersecting the obtained interval traces with TΨ, we
obtain a countable set T ′

Ψ,𝐼 ⊆ TI such that

⋃
𝒕 ∈T′

Ψ,𝐼
L𝒕M ⋐

{𝒔 ∈ Sat(Δ) | V[𝒔/𝛼] ∈ 𝐼 }. By the same lemma, we find

a countable set T ′
Ψ,𝐼𝑐 ⊆ TI such that

⋃
𝒕 ∈T′

Ψ,𝐼𝑐
L𝒕M ⋐ {𝒔 ∈

Sat(Δ) | V[𝒔/𝛼] ∉ 𝐼 } because the complement of 𝐼 can be

written as a countable union of intervals. By Lemma C.10, we

find subdivisions TΨ,𝐼 and TΨ,𝐼𝑐 that even satisfy
⋃

𝒕 ∈TΨ,𝐼 L𝒕M ⋐
val−1𝑃 (𝐼 ) ∩ Sat(Δ) and ⋃

𝒕 ∈TΨ,𝐼𝑐 L𝒕M ⋐ val−1𝑃 (R \ 𝐼 ) ∩ Sat(Δ).
By Lemma C.7, we can assume that the interval traces TΨ,𝐼
are almost disjoint. Because of the almost sure termination

assumption, the set of traces

⋃
(V,𝑛,Δ,Ξ) Sat(Δ) = val−1𝑃 (R)

where the union ranges over all symbolic paths of 𝑃 has

measure 1. As a consequence,

⋃
Ψ∈symPaths (𝑃,0,∅,∅) (TΨ,𝐼∪TΨ,𝐼𝑐 )

is a compatible and exhaustive set of interval traces. Now

J𝑃K(𝐼 ) =
∑

(V,𝑛,Δ,Ξ)
J(V, 𝑛,Δ,Ξ)K(𝐼 )

=
∑

(V,𝑛,Δ,Ξ)

∫
Sat𝑛 (Δ)

[V[𝒔/𝛼] ∈ 𝐼 ]
∏
W∈Ξ

W[𝒔/𝛼] d𝒔

=
∑

(V,𝑛,Δ,Ξ)

∑
𝒕 ∈T(V,𝑛,Δ,Ξ),𝐼

∫
L𝒕M

∏
W∈Ξ

W[𝒔/𝛼] d𝒔

where the outer sum ranges over the symbolic paths (V,

𝑛,Δ,Ξ) ∈ symPaths(𝑃, 0, ∅, ∅). The first equality holds by

Theorem 6.1, the second one by Lemma B.1 and the last one

by the construction of T(V,𝑛,Δ,Ξ),𝐼 .
Step 3: approximating the weight function. Let

T ′
:=

⋃
Ψ∈symPaths (𝑃,0,∅,∅) TΨ,𝐼 .

For each 𝒕 ∈ T ′
, fix some 𝜖𝒕 > 0, such that

∑
𝒕 ∈T′ 𝜖𝒕 = 𝜖 .

This can be achieved, for example, by enumerating T ′
as

𝒕 (1) , 𝒕 (2) , . . . and choosing 𝜖𝒕 (𝑖 ) = 2
−𝑖𝜖 . By Lemma C.9, we
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can find for each 𝒕 ∈ T ′
a countable set S𝒕 of interval traces

such that:∑
𝒕 ′∈S𝒕

vol(𝒕 ′) sup

𝒔∈L𝒕 ′M

∏
W∈Ξ

W[𝒔/𝛼] − 𝜖𝒕/2

≤
∫

L𝒕M

∏
W∈Ξ

W[𝒔/𝛼] d𝒔

≤
∑
𝒕 ′∈S𝒕

vol(𝒕 ′) min

𝒔∈L𝒕 ′M

∏
W∈Ξ

W[𝒔/𝛼] + 𝜖𝒕/2

Next, choose 𝜖𝒕 ′ > 0 for each 𝒕 ′ in such away that
∑

𝒕 ′∈S′
𝒕
𝜖𝒕 ′ <

𝜖𝒕/2. By Lemma C.11, we can find for each 𝒕 ′ a finite subdi-
vision S′

𝒕 ′ such that for all 𝒕 ′′ ∈ S′
𝒕 ′ , we have

sup

𝒔∈L𝒕 ′′M
wt𝑃 (𝒔) = sup

𝒔∈L𝒕 ′′M

∏
W∈Ξ

W[𝒔/𝛼] ≥ supwtI𝑃 (𝒕
′′) − 𝜖𝒕 ′

min

𝒔∈L𝒕 ′′M
wt𝑃 (𝒔) = min

𝒔∈L𝒕 ′′M

∏
W∈Ξ

W[𝒔/𝛼] ≤ minwtI𝑃 (𝒕
′′) + 𝜖𝒕 ′ .

Multiplying by vol(𝒕 ′′) and summing over all 𝒕 ′′, we find

together with the previous inequality∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′) supwtI𝑃 (𝒕
′′) − 𝜖𝒕

≤
∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′) (supwtI𝑃 (𝒕
′′) − 𝜖𝒕 ′) − 𝜖𝒕/2

≤
∫

L𝒕M

∏
W∈Ξ

W[𝒔/𝛼] d𝒔

≤
∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′) (minwtI𝑃 (𝒕
′′) + 𝜖𝒕 ′) + 𝜖𝒕/2

≤
∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′)minwtI𝑃 (𝒕
′′) + 𝜖𝒕

because

∑
𝒕 ′′∈S′

𝒕′
vol(𝒕 ′′) ≤ 1 and thus the contribution of all

the 𝜖𝒕 ′ is at most 𝜖𝒕/2.
Overall, the desired trace set is given by

T :=
⋃

Ψ=(V,𝑛,Δ,Ξ)

©­«TΨ,𝐼𝑐 ∪
⋃

𝒕 ∈TΨ,𝐼

⋃
𝒕 ′∈S𝒕

S′
𝒕 ′
ª®¬ ,

is compatible and exhaustive because it is a subdivision of

TΨ,𝐼𝑐 and TΨ,𝐼 . By construction, we have valI𝑃 (𝒕) ⊆ 𝐼 for

𝒕 ∈ TΨ,𝐼 and valI𝑃 (𝒕) ∩ 𝐼 = ∅ for 𝒕 ∈ TΨ,𝐼𝑐 . Hence the TΨ,𝐼𝑐 -
summands vanish in the sum for the bounds and we obtain

upperBdT
𝑃 (𝐼 ) − 𝜖

=
∑
𝒕 ∈T

vol(𝒕) (supwtI𝑃 (𝒕)) [val
I
𝑃 (𝒕) ∩ 𝐼 ≠ ∅] − 𝜖

=
∑

Ψ=(V,𝑛,Δ,Ξ)

∑
𝒕 ∈TΨ,𝐼©­«

∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′) supwtI𝑃 (𝒕
′′) − 𝜖𝒕

ª®¬
≤

∑
Ψ=(V,𝑛,Δ,Ξ)

∑
𝒕 ∈TΨ,𝐼

∫
L𝒕M

∏
W∈Ξ

W[𝒔/𝛼] d𝒔︸                                            ︷︷                                            ︸
=J𝑃K(𝐼 )

≤
∑

Ψ=(V,𝑛,Δ,Ξ)

∑
𝒕 ∈TΨ,𝐼©­«

∑
𝒕 ′∈S𝒕

∑
𝒕 ′′∈S′

𝒕′

vol(𝒕 ′′)minwtI𝑃 (𝒕
′′) + 𝜖𝒕

ª®¬
=

∑
𝒕 ∈T

vol(𝒕) (minwtI𝑃 (𝒕)) [val
I
𝑃 (𝒕) ⊆ 𝐼 ] + 𝜖

= lowerBdT
𝑃 (𝐼 ) + 𝜖. □

Lemma C.7. Given a countable set of interval traces T ⊆ I𝑛 ,
there is a countable set of interval traces T ′ ⊆ I𝑛 that is
compatible and satisfies

⋃
𝒕 ∈TL𝒕M =

⋃
𝒕 ∈T′L𝒕M.

Proof. Let 𝐴 : N→ T be an enumeration. Define 𝐴′
: N→

ΣR𝑛 by𝑚 ↦→ 𝐴(𝑚) \ ⋃𝑚−1
𝑖=0 𝐴(𝑖) where 𝑆 denotes the closure

of 𝑆 . Then the collection {𝐴′(𝑚) | 𝑚 ∈ N} is pairwise almost

disjoint, and each 𝐴′(𝑚) can be written as a finite union of

boxes, proving the claim. □

Lemma C.8. LetV a symbolic value of ground type contain-
ing each sample variable 𝛼1, . . . , 𝛼𝑛 at most once and [𝑥,𝑦]
an interval. Then there is a countable set of pairwise disjoint
interval traces T ⊂ I𝑛[0,1] such that⋃

𝒕 ∈T
L𝒕M ⋐ {𝒔 ∈ [0, 1]𝑛 | V[𝒔/𝛼] ∈ [𝑥,𝑦]}.

Proof. If V is of ground type, then it is simply a composi-

tion of primitive functions applied to sample variables and

literals. Since the set of primitive functions is closed un-

der composition and since no sample variable occurs twice,

this composition is still an interval separable function 𝑓

of the sample variables. By definition of interval separabil-

ity, there is a countable set of interval traces J such that⋃
𝒕 ∈JL𝒕M ⋐ 𝑓 −1 ( [𝑥,𝑦]), as desired. □

Lemma C.9. Let 𝒕 ∈ I𝑛 be an interval trace and Ξ a set of
symbolic values with sample variables from 𝛼 = 𝛼1, . . . , 𝛼𝑛 .
Then for any 𝜖 > 0, there is a countable subdivision T of 𝒕
such that ∑

𝒕 ′∈T
vol(𝒕 ′) sup

𝒔∈L𝒕 ′M

∏
W∈Ξ

W[𝒔/𝛼] − 𝜖

≤
∫

L𝒕M

∏
W∈Ξ

W[𝒔/𝛼] d𝒔

≤
∑
𝒕 ′∈T

vol(𝒕 ′) min

𝒔∈L𝒕 ′M

∏
W∈Ξ

W[𝒔/𝛼] + 𝜖.

Proof. Values are simply boxwise continuous functions ap-

plied to the sample variables. Intersecting the boxes for each

W ∈ Ξ, we see that the function

𝑓 : L𝒕M → R, 𝒔 ↦→
∏
W∈Ξ

W[𝒔/𝛼]
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is boxwise continuous. We can thus find a countable subdi-

vision Tcont of 𝒕 such that 𝑓 is continuous on each 𝒕 ′ ∈ Tcont.
Since we can sum over the 𝒕 ′ ∈ Tcont, it suffices to prove

that each integral

∫
L𝒕 ′M 𝑓 (𝒔) d𝒔 can be approximated arbitrar-

ily closely. Note that each such integral is finite because a

continuous function is bounded on a compact set and the

measure of L𝒕 ′M is finite. But then such approximations are

given by Riemann sums, i.e. the sums that are used to de-

fine the Riemann integral. As a concrete example, one can

consider the subdivision T𝑚 of 𝒕 ′ in𝑚 equidistant sections

in each dimension (consisting of 𝑚𝑛
parts overall). Then∑

𝒕 ′′∈T𝑚 vol(𝒕 ′′)min𝒔∈L𝒕 ′′M 𝑓 (𝒔) converges to the Riemann in-

tegral

∫
L𝒕 ′M 𝑓 (𝒔) d𝒔 as𝑚 → ∞ (and similarly for the supre-

mum). Since it is known that the Riemann integral and the

Lebesgue integral have the same value for continuous func-

tions on a Cartesian product of compact intervals, the claim

follows immediately. □

LemmaC.10 (Relationship between symbolic execution and

interval semantics). Let Ψ = (V, 𝑛,Δ,Ξ) be a symbolic path
of 𝑃 and 𝒕 an interval trace with L𝒕M ⊆ Sat𝑛 (Δ). Suppose
furthermore that all the symbolic values contain each of the
sample variables 𝛼 = 𝛼1, . . . , 𝛼𝑛 at most once. Then there is
a subdivision T of 𝒕 such that for all 𝒕 ′ ∈ T , the interval
semantics for the value is precise:

valI𝑃 (𝒕
′) = {val𝑃 (𝒔) | 𝒔 ∈ L𝒕 ′M}.

For each symbolic score value W ∈ Ξ, let [W−
𝒕 ′ ,W+

𝒕 ′ ] be
its interval approximation, i.e.W−

𝒕 ′ = min𝒔∈L𝒕 ′M W[𝒔/𝛼] and
W+

𝒕 ′ = sup𝒔∈L𝒕 ′M W[𝒔/𝛼]. Then

wtI𝑃 (𝒕
′) =

[ ∏
W∈Ξ

W−
𝒕 ′ ,

∏
W∈Ξ

W+
𝒕 ′

]
.

Proof. The symbolic valueV is a composition of primitive

functions applied to 𝛼 ’s. Hence the are boxwise continuous

functions of the 𝛼 ’s. We pick a suitable subdivision T such

that all these functions are continuous when restricted to

any 𝒕 ′ ∈ T . For any such function 𝑓 , we have

𝑓I ( [𝑥1, 𝑦1], . . . , [𝑥𝑚, 𝑦𝑚]) = [inf 𝐹, sup 𝐹 ]
where 𝐹 := 𝑓 ( [𝑥1, 𝑦1] × · · · × [𝑥𝑚, 𝑦𝑚]) ⊆ R, by definition.

Then continuity implies that the image of any box is a com-

pact and path-connected subset of R, i.e. an interval. Hence

we even have 𝑓I ( [𝑥1, 𝑦1], . . . , [𝑥𝑚, 𝑦𝑚]) = 𝐹 , i.e. the image of

any box equals its interval approximation, proving the claim

about the value semantics.

For the interval semantics of the weight, note that the

previous argument applies to every symbolic score value

W ∈ Ξ, proving that

{W[𝒔/𝛼] | 𝒔 ∈ L𝒕 ′M} = [W−
𝒕 ′ ,W+

𝒕 ′ ] .
Since the interval semantics multiplies the interval approxi-

mation of each score value in interval arithmetic, this implies

the claim. □

Note that the interval approximation of the weight is im-

precise in the following sense:

wtI𝑃 (𝒕
′) ≠

{ ∏
W∈Ξ

W[𝒔/𝛼]
����� 𝒔 ∈ L𝒕 ′M

}
.

As an example, if Ξ = {𝛼1, 1 − 𝛼1} and 𝒕 ′′ = ⟨[0, 1]⟩ then
the left-hand side is [0, 1] because each of the weights is

approximated by [0, 1], but the right-hand side is [0, 1/4]
because the function 𝛼1 (1 − 𝛼1) attains its maximum at 1/4,
not 1.

Lemma C.11. Let Ψ = (V, 𝑛,Δ,Ξ) be a symbolic path of 𝑃
and 𝒕 an interval trace with L𝒕M ⊆ Sat𝑛 (Δ). Suppose further-
more that all the symbolic values contain each of the sample
variables 𝛼 = 𝛼1, . . . , 𝛼𝑛 at most once. Then for all 𝜖 > 0,
there is a subdivision T of 𝒕 such that for all 𝒕 ′ ∈ T , we have
min𝒔∈L𝒕 ′M wt𝑃 (𝒔) ≤ minwtI

𝑃
(𝒕 ′) + 𝜖 and sup𝒔∈L𝒕 ′M wt𝑃 (𝒔) ≥

supwtI
𝑃
(𝒕 ′) − 𝜖 .

Proof. Since for each W ∈ Ξ, the function 𝑓 : L𝒕M → R, 𝒔 ↦→
W[𝒔/𝛼] is boxwise continuous (a property of primitive func-

tions), we can find a countable subdivision T ′
of 𝒕 , such that

for all 𝒕 ′ ∈ T ′
, 𝑓 is continuous on L𝒕 ′M. Hence it suffices to

prove the statement for each 𝒕 ′.
Since L𝒕 ′M is compact (because it’s closed and bounded),

𝑓 attains a maximum𝑊 < ∞ on L𝒕 ′M and is even uniformly

continuous on 𝒕 ′. Hence there is a 𝛿 > 0 such that whenever

| |𝒔 − 𝒔 ′ | | < 𝛿 then |𝑓 (𝒔) − 𝑓 (𝒔 ′) | < 𝜖 ′ := 𝜖

𝑊 |Ξ|−1 .

Let T be a subdivision where each interval trace 𝒕 ∈
T has diameter less than 𝛿 . For 𝒕 ∈ T and W ∈ Ξ, let
W−

𝒕 := min𝒔∈L𝒕M W[𝒔/𝛼] and W+
𝒕 := sup𝒔∈L𝒕M W[𝒔/𝛼]. By

the choice of T , we have W+
𝒕 ≤ W−

𝒕 + 𝜖 ′ for 𝒕 ∈ T . By

Lemma C.10, we find that supwtI
𝑃
(𝒕) =

∏
W∈Ξ W+

𝒕 and

minwtI
𝑃
(𝒕) = ∏

W∈Ξ W−
𝒕 . As a consequence, we have

supwtI𝑃 (𝒕) −minwtI𝑃 (𝒕) =
∏
W∈Ξ

W+
𝒕 −

∏
W∈Ξ

W−
𝒕

<
∏
W∈Ξ

(W−
𝒕 + 𝜖 ′) −

∏
W∈Ξ

W−
𝒕

< 𝜖 ′𝑊 |Ξ |−1 = 𝜖

So the interval wtI
𝑃
(𝒕) has diameter less than 𝜖 . Since the

interval {wt𝑃 (𝒔) | 𝒔 ∈ L𝒕 ′M} is contained in it (by soundness),

the claim follows. □

Corollary 4.4. Let 𝐼 ∈ I and ⊢ 𝑃 : R be as in Theorem 4.3.
There is a sequence of finite, compatible sets of interval traces
T1,T2, . . . ⊆ TI s.t. lim𝑛→∞ lowerBdT𝑛

𝑃
(𝐼 ) = J𝑃K(𝐼 ).

Proof. By Theorem 4.3, we can find for each 𝑛 ∈ N a set

of interval traces T ′
𝑛 such that lowerBdT′

𝑛

𝑃
(𝐼 ) > J𝑃K(𝐼 ) −

1/𝑛. Since the lower bound is defined as a sum over T ′
𝑛 ,

there is a finite subset T𝑛 such that lowerBdT𝑛
𝑃
(𝐼 ) > J𝑃K(𝐼 ) −

2/𝑛. Since T ′
𝑛 is still compatible, the soundness result yields

lowerBdT𝑛
𝑃
(𝐼 ) ≤ J𝑃K(𝐼 ), implying the claim. □
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Finitely many interval traces are not enough for complete

upper bounds, if the weight function is unbounded. This

issue arises even if we can compute the tightest possible

bounds on the weight function, as the following program

illustrates.

Example C.3. Consider the following probabilistic program
expressed in pseudocode.

threshold := 1

while (sample ≤ threshold) do
threshold :=

threshold
2

score(2)
The program only requires addition and scalar multiplica-

tion. It can even be implemented using call-by-name (CbN)

semantics (which allows each sampled value to be used at

most once). For example in SPCF we can write

𝑃 ≡
(
𝜇
𝜑
𝑠 . if (sample − 𝑠, score(2);𝜑 (𝑠/2), 1)

)
1

The program 𝑃 has the weight function

wt𝑃 (⟨𝑡0, . . . , 𝑡𝑛⟩) =


2
𝑛

if 𝑡𝑛 > 2
−𝑛∧

∀𝑖 ∈ {0, . . . , 𝑛 − 1} : 𝑡𝑖 ≤ 2
−𝑖

0 otherwise.

𝑃 is integrable because the normalizing constant is

𝑍 =

∫
T
wt𝑃 (𝒔) d𝒔 =

∞∑
𝑛=1

2
𝑛 × (1 − 2

−𝑛)
𝑛−1∏
𝑖=0

2
−𝑖

=

∞∑
𝑛=1

2
𝑛 (1 − 2

−𝑛)2−𝑛 (𝑛−1)/2 < ∞.

We claim that 𝑃 requires infinitely many interval traces for

the upper bound to converge to the true denotation. Define

the sets of traces 𝑇𝑛 for 𝑛 ≥ 1 by

𝑇𝑛 = [0, 20] × [0, 2−1] × · · · × [0, 2−𝑛+1] × (2−𝑛, 1] .
Suppose we are given an arbitrary finite exhaustive set of

interval traces. This set needs to cover all of the 𝑇𝑛’s, so

one interval trace, say 𝒕 , must cover infinitely many 𝑇𝑛’s.

Since wt𝑃 (𝒔) = 2
𝑛
for 𝒔 ∈ 𝑇𝑛 , the weight function on 𝒕 is

unbounded. Therefore, the only possible upper bound for 𝒕
is ∞, even if our semantics could compute the set {wt𝑃 (𝒔) |
𝒔 ∈ L𝒕M} exactly. Hence any finite exhaustive interval trace

has upper bound ∞, while the true denotation is finite. As

we have seen, this is not because of imprecision of interval

analysis, but an inherent problem if the weight function is

unbounded. So we cannot hope for complete upper bounds

with finitely many interval traces.

D Supplementary Material for Section 5
We provide additional proofs and material for Section 5. To

have access to named rules, we give the type system in Fig. 9

which agrees with the one in Fig. 4 in everything but the

labels.

D.1 Soundness
To show soundness (Theorem 5.1), we establish a (weight-

aware) subject reduction property for our type system as

follows. For an interval [𝑎, 𝑏] ∈ I and 𝑟 ∈ R≥0, we define
𝑟 · [𝑎, 𝑏] := [𝑟 · 𝑎, 𝑟 · 𝑏]. To simplify notation, we use a

modified transition relation that omits the concrete trace

(which is irrelevant in Theorem 5.1). We write 𝑃 →𝑤 𝑃 ′
if

(𝑃, 𝒔, 1) → (𝑃 ′, 𝒔 ′,𝑤) for some 𝑤 ∈ R and 𝒔, 𝒔 ′ ∈ T. Note
that we could define→𝑤 as a dedicated reduction system by

adapting the rules from→ in Fig. 2.

Lemma D.1 (Substitution). If Γ; {𝑥𝑖 : 𝜎𝑖 }𝑛𝑖=1 ⊢ 𝑃 : A for

distinct variables 𝑥𝑖 and if Γ ⊢ 𝑀𝑖 :

{
𝜎𝑖
1

}
for all 𝑖 ∈ {1, . . . , 𝑛}

then Γ ⊢ 𝑃 [𝑀𝑖/𝑥𝑖 ]𝑛𝑖=1 : A.

Proof. By a standard induction on𝑀 . □

Lemma D.2 (Weighted Subject Reduction). Let 𝑃 be any

program such that ⊢ 𝑃 :

{
𝜎

𝐽

}
and 𝑃 →𝑤 𝑃 ′ for some 𝑤 > 0.

Then ⊢ 𝑃 ′
:

{
𝜎

1

𝑤
· 𝐽

}
.

Proof. We prove this by induction on the structure of 𝑃 .

Case 𝑃 = sample: then 𝑃 →1 𝑟 for some 𝑟 ∈ [0, 1]. As
multiple consecutive application of (Sub) can be replaced

by a single one since (as ⊑A is transitive), we can assume

w.l.o.g. that the last step in ⊢ 𝑃 :

{
𝜎

𝐽

}
was:

(Sample)

⊢ sample :
{
[0, 1]
1

}
(Sub)

⊢ sample :
{
𝐼

𝐽

}
By subtyping we have [0, 1] ⊑ 𝐼 and 1 ⊑ 𝐽 . So [𝑟, 𝑟 ] ⊑ 𝐼 and

we can type ⊢ 𝑟 :
{
𝐼

𝐽

}
using (Lit) and (Sub) as required.

Case 𝑃 = 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |): then 𝑃 →1 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |).W.l.o.g.,

we can assume that the last step in ⊢ 𝑃 :

{
𝜎

𝐽

}
was

(Lit)

⊢ 𝑟1 :
{
[𝑟1, 𝑟1]

1

}
(Sub)

⊢ 𝑟1 :
{
𝐼1
𝐽1

}
· · ·

(Lit)

⊢ 𝑟 |𝑓 | :
{
[𝑟 |𝑓 |, 𝑟 |𝑓 |]

1

}
(Sub)

⊢ 𝑟 |𝑓 | :
{
𝐼 |𝑓 |
𝐽 |𝑓 |

}
(Prim)

⊢ 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |) :
{
𝑓 I (𝐼1, . . . , 𝐼 |𝑓 |)

(×I) |𝑓 |
𝑖=1

𝐽𝑖

}
(Sub)

⊢ 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |) :
{
𝐼

𝐽

}
So by subtyping 𝑟𝑖 ∈ 𝐼𝑖 and 1 ∈ 𝐽𝑖 for all 𝑖 . By definition of 𝑓 I

we thus have 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |) ∈ 𝑓 I (𝐼1, . . . , 𝐼 |𝑓 |) and (again by

subtyping) we have 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |) ∈ 𝐼 . Similarly, by defini-

tion of ×I we have 1 ∈ (×I) |𝑓 |
𝑖=1

𝐽𝑖 and thus 1 ∈ 𝐽 . We can type

⊢ 𝑓 (𝑟1, . . . , 𝑟 |𝑓 |) :
{
𝐼

𝐽

}
using (Lit) and (Sub) as required.

Case 𝑃 = if (𝑟, 𝑀, 𝑁 ) and 𝑟 ≤ 0: then 𝑃 →1 𝑀 . W.l.o.g.,

we can assume that the last step in ⊢ 𝑃 :

{
𝜎

𝐽

}
is
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𝑥 : 𝜎 ∈ Γ
(Var)

Γ ⊢ 𝑥 :

{
𝜎

1

} Γ ⊢ 𝑀 : A A ⊑A B
(Sub)

Γ ⊢ 𝑀 : B
Γ;𝑥 : 𝜎 ⊢ 𝑀 : A

(Abs)

Γ ⊢ 𝜆𝑥 .𝑀 :

{
𝜎 → A

1

} Γ;𝜑 : 𝜎 → A;𝑥 : 𝜎 ⊢ 𝑀 : A
(Fix)

Γ ⊢ 𝜇
𝜑
𝑥 . 𝑀 :

{
𝜎 → A

1

}

(Sample)

Γ ⊢ sample :
{
[0, 1]
1

} Γ ⊢ 𝑀 :

𝜎1 →
{

𝜎2
[𝑒, 𝑓 ]

}
[𝑎, 𝑏]

 Γ ⊢ 𝑁 :

{
𝜎1
[𝑐, 𝑑]

}
(App)

Γ ⊢ 𝑀𝑁 :

{
𝜎2

[𝑎, 𝑏] ×I [𝑐, 𝑑] ×I [𝑒, 𝑓 ]

}

(Lit)

Γ ⊢ 𝑟 :
{
[𝑟, 𝑟 ]
1

} Γ ⊢ 𝑀 :

{
[_, _]
[𝑎, 𝑏]

}
Γ ⊢ 𝑁 :

{
𝜎

[𝑐, 𝑑]

}
Γ ⊢ 𝑃 :

{
𝜎

[𝑐, 𝑑]

}
(If)

Γ ⊢ if (𝑀, 𝑁, 𝑃) :
{

𝜎

[𝑎, 𝑏] ×I [𝑐, 𝑑]

}
Γ ⊢ 𝑀 :

{
[𝑎, 𝑏]
[𝑐, 𝑑]

}
(Score)

Γ ⊢ score(𝑀) :
{

[𝑎, 𝑏] ⊓ [0,∞]
[𝑐, 𝑑] ×I

(
[𝑎, 𝑏] ⊓ [0,∞]

)}
Γ ⊢ 𝑀1 :

{
[𝑎1, 𝑏1]
[𝑐1, 𝑑1]

}
· · · Γ ⊢ 𝑀 |𝑓 | :

{
[𝑎 |𝑓 |, 𝑏 |𝑓 |]
[𝑐 |𝑓 |, 𝑑 |𝑓 |]

}
(Prim)

Γ ⊢ 𝑓 (𝑀1, . . . , 𝑀 |𝑓 |) :
{
𝑓 I ( [𝑎1, 𝑏1], . . . , [𝑎 |𝑓 |, 𝑏 |𝑓 |])

(×I) |𝑓 |
𝑖=1

[𝑐𝑖 , 𝑑𝑖 ]

}
Figure 9. Weight-aware interval type system for SPCF with typing rule names. The rules agree with those in Fig. 4.

(Lit)

⊢ 𝑟 :
{
[𝑟, 𝑟 ]
1

}
(Sub)

⊢ 𝑟 :
{
𝐼

𝐽 ′′

}
⊢ 𝑀 :

{
𝜎 ′

𝐽 ′

}
⊢ 𝑁 :

{
𝜎 ′

𝐽 ′

}
(If)

⊢ if (𝑟, 𝑀, 𝑁 ) :
{

𝜎 ′

𝐽 ′ ×I 𝐽 ′′
}
(Sub)

⊢ if (𝑟, 𝑀, 𝑁 ) :
{
𝜎

𝐽

}
and we have 1 ∈ 𝐽 ′′, 𝜎 ′ ⊑𝜎 𝜎 and 𝐽 ′ ×I 𝐽 ′′ ⊑ 𝐽 by subtyping.

As 1 ∈ 𝐽 ′′, we get 𝐽 ′ ⊑ 𝐽 ′ ×I 𝐽 ′′. Thus we obtain 𝐽 ′ ⊑ 𝐽 and

𝜎 ′ ⊑𝜎 𝜎 , and we can type ⊢ 𝑀 :

{
𝜎

𝐽

}
using (Sub).

Case 𝑃 = if (𝑟, 𝑀, 𝑁 ) and 𝑟 > 0: then 𝑃 →1 𝑁 . Analogous

to the previous case.

Case 𝑃 = score(𝑟 ) and 𝑟 ≥ 0: then 𝑃 →𝑟 𝑟 . W.l.o.g., we

can assume that the last step in ⊢ 𝑃 :

{
𝜎

𝐽

}
is

(Lit)

⊢ 𝑟 :
{
[𝑟, 𝑟 ]
1

}
(Sub)

⊢ 𝑟 :
{
𝐼 ′

𝐽 ′

}
(Score)

⊢ score(𝑟 ) :
{

𝐼 ′ ⊓ [0,∞]
𝐽 ′ ×I (𝐼 ′ ⊓ [0,∞])

}
(Sub)

⊢ score(𝑟 ) :
{
𝐼

𝐽

}
By subtyping we have 𝑟 ∈ 𝐼 ′ and even 𝑟 ∈ 𝐼 ′⊓ [0,∞] because
𝑟 ≥ 0. Thus 𝑟 ∈ 𝐼 , again by subtyping. Similarly, 1 ∈ 𝐽 ′ and
by definition of ×I, we have 𝑟 ∈ 𝐽 ′ ×I (𝐼 ′ ⊓ [0,∞]). Thus
𝑟 ∈ 𝐽 by subtyping. This already implies 1 ∈ 1

𝑟
· 𝐽 and we

can thus type ⊢ 𝑟 :
{

𝐼
1

𝑟
· 𝐽

}
by using (Lit) and (Sub).

Case 𝑃 = (𝜆𝑥 .𝑀)𝑉 : then 𝑃 →1 𝑀 [𝑉 /𝑥]. W.l.o.g., the last

step in ⊢ 𝑃 :

{
𝜎

𝐽

}
is

{𝑥 : �̃� ′} ⊢ 𝑀 :

{
�̃� ′′

𝐽 ′′

}
(Abs)

⊢ 𝜆𝑥 .𝑀 :

{
�̃� ′ →

{
�̃� ′′

𝐽 ′′

}
1

}
(Sub)

⊢ 𝜆𝑥 .𝑀 :

{
𝜎 ′ →

{
𝜎 ′′

𝐽 ′′

}
𝐽 ′

}
⊢ 𝑉 :

{
𝜎 ′

𝐽 ′′′

}
(App)

⊢ (𝜆𝑥 .𝑀)𝑉 :

{
𝜎 ′′

𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′
}
(Sub)

⊢ (𝜆𝑥 .𝑀)𝑉 :

{
𝜎

𝐽

}
By subtyping we get that 𝜎 ′ ⊑𝜎 �̃� ′

. It is easy to see that we

can also type ⊢ 𝑉 :

{
𝜎 ′

1

}
because 𝑉 is a value and we get

⊢ 𝑉 :

{
�̃� ′

1

}
by (Sub). Using Lemma D.1, we can thus type

⊢ 𝑀 [𝑉 /𝑥] :
{
�̃� ′′

𝐽 ′′

}
.

We have 1 ∈ 𝐽 ′ by subyptying and as 𝑉 is a value, it

is easy to see that 1 ∈ 𝐽 ′′′. Hence 𝐽 ′′ ⊑ 𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′.
Also by subtyping, we find �̃� ′′ ⊑𝜎 𝜎 ′′ ⊑𝜎 𝜎 , 𝐽 ′′ ⊑ 𝐽 ′′, and
𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′ ⊑ 𝐽 . This implies �̃� ′′ ⊑𝜎 𝜎 and 𝐽 ′′ ⊑ 𝐽 . By

subtyping ⊢ 𝑀 [𝑉 /𝑥] :
{
𝜎

𝐽

}
, as required.

Case 𝑃 = (𝜇𝜑𝑥 .𝑀)𝑉 : then 𝑃 →1 𝑀 [𝑉 /𝑥, (𝜇𝜑𝑥 .𝑀)/𝜑]. Anal-
ogous to the previous case for abstractions.
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Case 𝑃 = 𝐸 [𝑃 ′] for an evaluation context 𝐸 ≠ [·]: then
𝑃 ′ →𝑟 𝑃 ′′

and 𝑃 →𝑟 𝐸 [𝑃 ′′]. All such cases follow easily

by case analysis on 𝐸. As an example, consider the context

𝐸 = [·]𝑁 . In this situation, we have 𝑃 = 𝐸 [𝑃 ′] = 𝑃 ′𝑁 with

𝑃 ′ →𝑟 𝑃
′′
, so 𝑃 →𝑟 𝑃

′′𝑁 . W.l.o.g., the last step in ⊢ 𝑃 :

{
𝜎

𝐽

}
is

⊢ 𝑃 ′
:

{
𝜎 ′ →

{
𝜎 ′′

𝐽 ′′

}
𝐽 ′

}
⊢ 𝑁 :

{
𝜎 ′

𝐽 ′′′

}
(App)

⊢ 𝑃 ′𝑁 :

{
𝜎 ′′

𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′
}
(Sub)

⊢ 𝑃 ′𝑁 :

{
𝜎

𝐽

}
By the inductive assumption for 𝑃 ′ →𝑟 𝑃 ′′

, we get ⊢ 𝑃 ′′
:{

𝜎 ′ →
{
𝜎 ′′

𝐽 ′′

}
1

𝑟
· 𝐽 ′

}
and can then type

⊢ 𝑃 ′′
:

{
𝜎 ′ →

{
𝜎 ′′

𝐽 ′′

}
1

𝑟
· 𝐽 ′

}
⊢ 𝑁 :

{
𝜎 ′

𝐽 ′′′

}
(App)

⊢ 𝑃 ′𝑁 :

{
𝜎 ′′

1

𝑟
· 𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′

}
(Sub)

⊢ 𝑃 ′𝑁 :

{
𝜎

1

𝑟
· 𝐽

}
because if 𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′ ⊑ 𝐽 then 1

𝑟
· 𝐽 ′ ×I 𝐽 ′′ ×I 𝐽 ′′′ ⊑ 1

𝑟
· 𝐽 .

The proof for the other evaluation contexts, i.e., where 𝑃 =

if (𝑃 ′, 𝑀, 𝑁 ), 𝑃 = 𝑉𝑃 ′
, 𝑃 = score(𝑃 ′), or 𝑃 = 𝑓 (𝑟1, . . . , 𝑟𝑖−1,

𝑃 ′, 𝑁𝑖+1, . . . , 𝑁 |𝑓 |) for some 𝑃 ′ →𝑟 𝑃 ′′
, are all analogous to

the above. □

Lemma D.3 (Zero-Weighted Subject Reduction). Let 𝑃 be

any program such that ⊢ 𝑃 :

{
𝜎

𝐽

}
and 𝑃 →0 𝑃

′. Then

1. ⊢ 𝑃 ′
:

{
𝜎

𝐽 ′

}
for some 𝐽 ′, and

2. 0 ∈ 𝐽

Proof. The proof that ⊢ 𝑃 ′
:

{
𝜎

𝐽 ′

}
for some 𝐽 ′ is analogous to

the proof of LemmaD.2 with fewer restrictions on the weight.

The claim 0 ∈ 𝐽 follows by observing that 𝑃 →0 𝑃
′
is only

possible if the redex in 𝑃 is score(0). In case 𝑃 = score(0),
the claim follows directly from (Score). If 𝑃 = 𝐸 [score(0)],
it is a simple induction on the structure of the evaluation

context 𝐸. □

Theorem 5.1. Let ⊢ 𝑃 : R be a simply-typed program. If
⊢ 𝑃 :

{
[𝑎, 𝑏]
[𝑐, 𝑑]

}
and (𝑃, 𝒔, 1) →∗ (𝑟, ⟨⟩,𝑤) for some 𝒔 ∈ T and

𝑟,𝑤 ∈ R, then 𝑟 ∈ [𝑎, 𝑏] and𝑤 ∈ [𝑐, 𝑑].
Proof. Let

(𝑃, 𝒔, 1) = (𝑃0, 𝒔0,𝑤0) → · · · → (𝑃𝑛, 𝒔𝑛,𝑤𝑛) = (𝑟, ⟨⟩,𝑤)
be the reduction sequence of (𝑃, 𝒔, 1). By definition of→𝑤 it

is easy to see that we get

𝑃 = 𝑃0 →�̃�1
𝑃1 →�̃�2

· · · →�̃�𝑛
𝑃𝑛 = 𝑟

for unique �̃�1, . . . , �̃�𝑛 . Note that𝑤𝑖 =
∏𝑖

𝑗=1 �̃� 𝑗 .

We first assume that𝑤 ≠ 0 (so �̃�𝑖 ≠ 0 for all 𝑖). We claim

that for each 0 ≤ 𝑖 ≤ 𝑛, we can type

⊢ 𝑃𝑖 :
{

[𝑎, 𝑏]
1

𝑤𝑖
· [𝑐, 𝑑]

}
(7)

Equation (7) follows by simple induction: the base case 𝑖 = 0

holds by the assumption ⊢ 𝑃0 :

{
[𝑎, 𝑏]
[𝑐, 𝑑]

}
and because 𝑤0 = 1.

For the inductive case, we assume that ⊢ 𝑃𝑖 :
{

[𝑎, 𝑏]
1

𝑤𝑖
· [𝑐, 𝑑]

}
. We

apply Lemma D.2 to 𝑃𝑖 →�̃�𝑖
𝑃𝑖+1 and finish the induction

step using𝑤𝑖+1 = 𝑤𝑖�̃�𝑖+1:

⊢ 𝑃𝑖+1 :
{

[𝑎, 𝑏]
1

�̃�𝑖+1
· 1

𝑤𝑖
· [𝑐, 𝑑]

}
=

{
[𝑎, 𝑏]

1

𝑤𝑖+1
· [𝑐, 𝑑]

}
Equation (7) thus implies ⊢ 𝑟 :

{
[𝑎, 𝑏]

1

𝑤
· [𝑐, 𝑑]

}
. W.l.o.g., we can

assume that this type judgment has the form

(Const)

⊢ 𝑟 :
{
[𝑟, 𝑟 ]
1

}
(Sub)

⊢ 𝑟 :
{

[𝑎, 𝑏]
1

𝑤
· [𝑐, 𝑑]

}
This implies 𝑟 ∈ [𝑎, 𝑏] and 𝑤 ∈ [𝑐, 𝑑] (because 1 ∈ 1

𝑤
·

[𝑐, 𝑑]), as required.
Now consider the case 𝑤 = 0, so at least one �̃�𝑖 = 0.

The claim that 𝑟 ∈ [𝑎, 𝑏] follows easily as above (now using

Item 1 of Lemma D.3 to handle the weight 0 reduction steps).

Let 𝑖∗ be the smallest index such that �̃�𝑖∗ = 0. Using the

same argument as above on the (possibly empty) prefix up

to index 𝑖∗ − 1 (where all �̃� 𝑗 are non-zero) we find

⊢ 𝑃𝑖∗−1 :
{

[𝑎, 𝑏]
1

𝑤𝑖∗−1
· [𝑐, 𝑑]

}
Note that this is well defined because �̃� 𝑗 > 0 for 𝑗 < 𝑖∗.
Item 2 of Lemma D.3 shows 0 ∈ 1

𝑤𝑖∗−1
· [𝑐, 𝑑], which already

implies𝑤 = 0 ∈ [𝑐, 𝑑], as required. □

D.2 Weak Completeness
Proposition 5.2. Let ⊢ 𝑃 : 𝛼 be a simply-typed program.
There exists a weighted interval type A such that ⊢ 𝑃 : A.

Proof. For every simple type 𝛼 , we define a weighted type

A𝛼 and weightless type 𝜎𝛼 by mutual recursion as follows.

𝜎R := [−∞,∞]
𝜎𝛼→𝛽 := 𝜎𝛼 → A𝛽

A𝛼 :=

{
𝜎𝛼

[0,∞]

}
That is, we insert [−∞,∞] for values and [0,∞] for weights
in all locations. We claim that if ⊢ 𝑃 : 𝛼 in the simple type

system, then ⊢ 𝑃 : A𝛼 in the weight-aware interval type

system.
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For the proof, we strengthen the induction hypothesis

by claiming: if Γ ⊢ 𝑃 : 𝛼 in the simple type system then

Γ↑𝜎 ⊢ 𝑃 : A𝛼 where

Γ↑𝜎 := {𝑥 : 𝜎𝛼 | 𝑥 : 𝛼 ∈ Γ}.
The claim can be proved by simple induction on the deriva-

tion of Γ ⊢ 𝑃 : 𝛼 using the respective typing rule for the

interval type system possibly followed by (Sub) for typing

rules that yield proper subtypes of A𝛼 .

Note that this typing derivation does not contain any

useful information to improve the precision of GuBPI. □

D.3 Constraint-based Type Inference
In this section we formalize the constraint-based type infer-

ence algorithm and sketch our constraints-solving method

based on worklist and widening. The overarching idea is

to substitute intervals with variables 𝜈𝑖 , called interval vari-

ables, and to encode typability as a constraint system. As

we work in the restricted interval domain (as opposed to

e.g. full first-order refinements), the resulting constraints

can be solved very efficiently, which is crucial to the practi-

cality of our tool.

Symbolic types. Symbolic types are defined by the fol-

lowing grammar:

𝜅 := 𝜈𝑖 | 𝜅 → 𝒜 𝒜 :=

{
𝜅

𝜈 𝑗

}
where 𝜈𝑖 , 𝜈 𝑗 are interval variables. Symbolic types are iden-

tical to interval types but use interval variables instead of

intervals as first-order types and in the weight bound.

Constraints. Constraints on interval variables come in

three forms:

𝑐 := 𝜈𝑛 ≡ [𝑎, 𝑏]
��� 𝜅1 ⊑ 𝜅2

��� 𝜈𝑛 ≡ 𝑓 (𝜈𝑛1
, . . . , 𝜈𝑛 |𝑓 | )

where 𝑓 is a primitive function and [𝑎, 𝑏] an interval. That

is, a constraint can either equate an interval variable to a

particular interval, require a symbolic type 𝜅1 to be a sub-

type of a type 𝜅2, or equate an interval variable to the result

of a function applied to interval variables. Note that due to

the compositional nature of our subtype relation ⊑ (which

extends to symbolic types) we can restrict ourself to con-

straints of the form 𝜈1 ⊑ 𝜈2 because each constraint of the

form 𝜅1 ⊑ 𝜅2 or 𝒜1 ⊑ 𝒜2 (with identical base types) can

be reduced to an equivalent set of constraints on interval

variables by the definition of the subtype relation.

Symbolic type system. In the presentation of our sym-

bolic type inference system, we aim to stay as close as possi-

ble to the implementation. Thus we describe it as an impure

type system, meaning that our typing rules have side effects.

In our case, typing rules can generate fresh interval variables.

For a simple type 𝛼 , we write fresh(𝛼) for the symbolic

weightless type obtained by replacing every base type R
with a fresh interval variable 𝜈𝑛 (and adding weights given

by fresh interval variables where needed). We write fresh()
for fresh(R). For a symbolic type 𝜅 we write base(𝜅) for the
underlying simple type (defined in the obvious way).

Our constraint generation system is given in Fig. 10. Judg-

ments have the form Γ ⊢ 𝑀 : 𝒜, C where Γ maps variables

to weightless symbolic types,𝒜 is a weighted symbolic type

and C a list of constraints on the interval variables. The

rules follow the structure of the system in Fig. 4 but replace

all operations on intervals with interval variables and con-

straints. The term structure directly determines the symbolic

typing derivation; there are no choices to be made, contrary

to Fig. 4, which requires “cleverness”, for example to find a

suitable interval for an argument in the fixpoint rule. Note

that in our system, we assume that the simple types of argu-
ments of abstractions and fixpoints are given. These types

can be determined by a simple prior run of any standard

type inference algorithm.

From symbolic to concrete types. An assignment 𝐴 is a

mapping from interval variables to concrete intervals. Given

a symbolic type 𝜅, we define the interval type 𝜅𝐴 by replac-

ing every interval variable in 𝜅 with the concrete interval

assigned to it in 𝐴. For a weighted symbolic type 𝒜, we

define𝒜
𝐴
in the same way. Given a set of constraints C, we

say that 𝐴 satisfies C, written 𝐴 |= C if all constraints in C
are satisfied (defined in the obvious way).

Theorem D.4. If ⊢ 𝑀 : 𝒜, C and 𝐴 |= C then ⊢ 𝑀 : 𝒜
𝐴.

Proof. This can be shown by induction on the structure of

the term, which also determines the symbolic typing deriva-

tion. From this, we obtain a valid interval typing derivation

by replacing interval variables in the derivation with the

concrete intervals assigned to them in 𝐴, and by applying

the (Sub) rule in places where subtyping constraints are

introduced. □

This theorem states that solutions to our constraints di-

rectly give us valid judgments in our interval type system,

which allows us to invoke Theorem 5.1.

Solving Constraints. To solve the resulting constraints,

we employ known techniques from abstract interpretation

[14]. Again, note that due to the simplicity of our constraints,

our approach avoids expensive calls to a theorem prover.

When solving a set of constraints C, we are interested in the

smallest solution, i.e. an assignment 𝐴 with 𝐴 |= C where

the intervals in A are smallest possible w.r.t. ⊑.

Naïve algorithm. A naïve attempt to find a satisfying

assignment for a set of constraints would be to iterate over

the constraints and to extend the current assignment (ini-

tially chosen to map all elements to the bottom element

⊥ in the interval domain, i.e. an empty interval) whenever

needed. For example, if 𝜈𝑖 ⊑ 𝜈 𝑗 is not satisfied by assign-

ment 𝐴, we can update 𝐴 by mapping 𝜈 𝑗 to 𝐴(𝜈 𝑗 ) ⊔ 𝐴(𝜈𝑖 ).
As is well known from abstract interpretation, this naïve
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𝑥 : 𝜅 ∈ Γ 𝜈 = fresh()

Γ ⊢ 𝑥 :

{
𝜅

𝜈

}
, {𝜈 ≡ 1}

𝜅 = fresh(𝛼) 𝜈 = fresh() Γ;𝑥 : 𝜅 ⊢ 𝑀 : 𝒜, C

Γ ⊢ 𝜆𝑥𝛼 .𝑀 :

{
𝜅 → 𝒜

𝜈

}
, C ∪ {𝜈 ≡ 1}

Γ ⊢ 𝑀 :

{
𝜈1
𝜈2

}
, C 𝜈 = fresh()

Γ ⊢ score(𝑀) :
{
𝜈1
𝜈

}
, C ∪ {𝜈 ≡ 𝜈1 × 𝜈2}

𝜈1 = fresh() 𝜈2 = fresh()

Γ ⊢ 𝑟 :
{
𝜈1
𝜈2

}
, {𝜈1 ≡ [𝑟, 𝑟 ], 𝜈2 ≡ 1}

𝜅 = fresh(𝛼) 𝜅1 = fresh(𝛽) 𝜈, 𝜈1 = fresh() Γ;𝜑 : 𝜅 →
{
𝜅1
𝜈1

}
;𝑥 : 𝜅 ⊢ 𝑀 :

{
𝜅2
𝜈2

}
, C

Γ ⊢ 𝜇
𝜑 :𝛼→𝛽
𝑥 . 𝑀 :

𝜅 →
{
𝜅2
𝜈2

}
𝜈

 , C ∪ {𝜈 ≡ 1, 𝜅2 ⊑ 𝜅1, 𝜈2 ⊑ 𝜈1}

𝜈, 𝜈 ′ = fresh()

Γ ⊢ sample :
{
𝜈

𝜈 ′

}
, {𝜈 ≡ [0, 1], 𝜈 ′ ≡ 1}

Γ ⊢ 𝑀 :

𝜅1 →
{
𝜅2
𝜈2

}
𝜈1

 , C1 Γ ⊢ 𝑁 :

{
𝜅3
𝜈3

}
, C2 𝜈 = fresh()

Γ ⊢ 𝑀𝑁 :

{
𝜅2
𝜈

}
, C1 ∪ C2 ∪ {𝜅3 ⊑ 𝜅1, 𝜈 ≡ 𝜈1 × 𝜈2 × 𝜈3}

Γ ⊢ 𝑀 :

{
𝜈1
𝜈2

}
, C𝑀 Γ ⊢ 𝑁 :

{
𝜅1
𝜈3

}
, C𝑁 Γ ⊢ 𝑃 :

{
𝜅2
𝜈4

}
, C𝑃 𝜅 = fresh(base(𝜅1)) 𝜈, 𝜈 ′ = fresh()

Γ ⊢ if (𝑀, 𝑁, 𝑃) :
{
𝜅

𝜈

}
, C𝑀 ∪ C𝑁 ∪ C𝑃 ∪ {𝜅1 ⊑ 𝜅, 𝜅2 ⊑ 𝜅, 𝜈 ≡ 𝜈2 × 𝜈 ′, 𝜈3 ⊑ 𝜈 ′, 𝜈4 ⊑ 𝜈 ′}

Γ ⊢ 𝑀1 :

{
𝜈1
𝜈 ′
1

}
, C1 · · · Γ ⊢ 𝑀 |𝑓 | :

{
𝜈 |𝑓 |
𝜈 ′|𝑓 |

}
, C|𝑓 | 𝜈, 𝜈 ′ = fresh()

Γ ⊢ 𝑓 (𝑀1, . . . , 𝑀 |𝑓 |) :
{
𝜈

𝜈 ′

}
,
⋃ |𝑓 |

𝑖=1
C𝑖 ∪ {𝜈 ≡ 𝑓 (𝜈1, . . . , 𝜈 |𝑓 |), 𝜈 ′ ≡

∏ |𝑓 |
𝑖=1

𝜈 ′
𝑖
}

Figure 10. Symbolic weight-aware type system.

approach may not terminate because the interval domain is

not chain-complete. For instance, consider the constraints

C = {𝜈1 = [0, 0], 𝜈2 = [1, 1], 𝜈1 ⊑ 𝜈3, 𝜈3 ≡ 𝜈3 + 𝜈2}. The
minimal solution is {𝜈1 ↦→ [0, 0], 𝜈2 ↦→ [1, 1], 𝜈3 ↦→ [0,∞]},
but the algorithm never terminates and instead assigns the

ascending chain [0, 0], [0, 1], [0, 2], . . . to 𝜈3.

Widening. To remedy the above problem, we use widen-
ing, a standard approach to ensure termination of abstract

interpretation on domains with infinite chains [14]. Let ∇ be

a widening operator for intervals. This means that 𝐼1 ⊔ 𝐼2 ⊑
𝐼1∇𝐼2 for all intervals 𝐼1, 𝐼2 and for every chain 𝐼0 ⊑ 𝐼1 ⊑ 𝐼2 ⊑
· · · , the chain (𝐼 ∇𝑖 )𝑖∈N defined by 𝐼 ∇

0
:= 𝐼0 and 𝐼 ∇𝑖 := 𝐼 ∇𝑖−1∇𝐼𝑖

for 𝑖 ≥ 1 stabilises eventually. A trivial widening operator is

given by only allowing intervals to extend to infinity, defined

as follows:

⊥∇𝐼 := 𝐼∇⊥ := 𝐼

[𝑎, 𝑏]∇[𝑐, 𝑑] := [𝑎, 𝑏] if 𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏

[𝑎, 𝑏]∇[𝑐, 𝑑] := [𝑎,∞] if 𝑎 ≤ 𝑐 ∧ 𝑑 > 𝑏

[𝑎, 𝑏]∇[𝑐, 𝑑] := [−∞, 𝑏] if 𝑑 ≤ 𝑏 ∧ 𝑐 < 𝑎

[𝑎, 𝑏]∇[𝑐, 𝑑] := [−∞,∞] if 𝑐 < 𝑎 ∧ 𝑑 > 𝑏

As soon as the upper bound increases or lower bound de-

creases, the bound is directly set to = ∞ or −∞ respectively.

By using the widening operator in each update step of our

naïve algorithm, we break infinite increasing chains and the

resulting algorithm is guaranteed to converge to a satisfying

assignment (if one exists).

GuBPI solves constraints by using a standard worklist

algorithm [15, 23], combined with the previous widening

operator.

E Supplementary Material for Section 6
E.1 Extensions to Linear Splitting
In this section we give additional information about how

our linear optimisation of the interval-trace semantics can

be extended to non-uniform samples and non-linear scoring

values.

Beyonduniform samples. To allow for non-uniform sam-

ples, we can combine the standard interval trace semantics

with the linear optimisation. That is, in addition to bounding

linear score functions, we also split and bound each non-

uniform sample (as in the standard interval trace semantics).

Suppose that 𝛼𝑖 is sampled from some continuous distribu-

tion 𝐷 . We then split the real line into chunks (the size and

number of which is selected by a heuristic depending on

𝐷). For each such chunk [𝑎, 𝑏], we compute the volume and

multiply by the lower and upper bounds of the pdf of 𝐷 on

[𝑎, 𝑏]. In this way, we can even approximate integrals where
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not all variables are sampled from a uniform distribution

(without needing to resort to inverse cumulative distribution

functions). Our experiments show, that as long as the guards

are still linear, this approach is advantageous compared to

the naive interval-based semantics.

Beyond linear functions. While guards on conditionals

are often linear, this is rarely the case for score expressions

(as one usually observes values from some non-uniform dis-

tribution with a non-linear pdf). Consider the pedestrian

example again. While all guards are linear, the score expres-

sion has the form pdf
Normal(1.1,0.1) (V). We can handle such

non-linear score values by applying linear optimisation to

the linear subexpressions and interval arithmetic for the

nonlinear parts. Formally, we assume that each W𝑖 ∈ Ξ
(each symbolic value we score with) has the form W𝑖 =

𝑓𝑖 (Z1

𝑖 , . . . ,Z
𝑚𝑖

𝑖
) where Z 𝑗

𝑖
for 1 ≤ 𝑗 ≤ 𝑚𝑖 denote linear

functions of the sample variables and 𝑓 : R𝑚𝑖 → R is a

possibly non-linear function. Every score expression can be

written in this way. For instance, in the pedestrian example,

we have 𝑓 = pdf
Normal(1.1,0.1) .

LetΞ′ = {Z 𝑗

𝑖
| 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚𝑖 }} be the set of

all such linear functions. We bound each linear function inΞ′

using linear optimisation as before. We obtain a box 𝑏 (which

now has dimension |Ξ′ | instead of |Ξ|) and define the weight
weight (𝑏) by applying the interval liftings 𝑓 I𝑖 of the non-

linear functions 𝑓𝑖 to the bounds for each argument. Formally,

weight (𝑏) =
∏𝑘

𝑖=1 𝑓
I
𝑖 (𝑏1𝑖 , . . . , 𝑏

𝑚𝑖

𝑖
) where 𝑏 𝑗

𝑖
is the interval

bound onZ 𝑗

𝑖
. Note that this strictly generalizes the approach

outlined before since we can choose 𝑓𝑖 as the identity if W𝑖

is already linear. The definition of approx (𝑏) with the new

weight definition still satisfies Proposition 6.4. This way, we

can even approximate integrals over non-linear functions by

means of simple volume computations. As our experiments

(e.g. on the pedestrian example) show, this approximation is

precise enough to obtain useful bounds on the posterior. It

is important to note that while we can deal with non-linear

score values, we cannot handle non-linear guards and instead

use the standard semantics for such cases.

F Supplementary Material for Section 7
Our experimentswere performed on a server runningUbuntu

18.04 with an 8core Intel(R) Xeon(R) CPU E3-1271 v3 @

3.60GHz CPU with 32Gbp of RAM. The current version of

GuBPI is not parallelised and makes no use of the additional

cores. The running times on a Macbook Pro with Apple M1

were comparable, and sometimes even faster.

F.1 Pyro’s HMC samples for the pedestrian example
The HMC samples plotted in Figs. 1 and 7 were generated

with the probabilistic programming system Pyro [5]. Since

the original pedestrian program has infinite expected run-

ning time, we introduced a stopping condition in the ran-

dom walk: if the distance traveled exceeded 10, the loop

was exited. (This has a negligible effect on the posterior

distribution because the weight of such a trace is at most

pdf
Normal(1.1,0.1) (10) < 10

−1700
.)

We used Pyro’s HMC sampler to compute 10 Markov

chains with 1000 samples each for this program. We set

the hyperparamaters to 0.1 for the step size and 50 for the

number of steps. We also tried the NUTS sampler, which

aims to automatically estimate good values for the hyperpa-

rameters, but it performed worse than the manually chosen

values. The running time for the chains varied significantly:

some took around one minute, others almost an hour. This

depended on whether the Markov chain got “stuck” in a long

trace. (The length of the traces varied between 2 and about

200.)

We discarded chainswith very low acceptance rates (under

1%), aggregated the remaining chains, which had acceptance

rates of over 50%, and used their histogram in Figs. 1 and 7.

F.2 Details on Probability Estimation
In Table 1 (results of our tool for the probability estima-

tion benchmark), we omitted the query for space reasons.

Complete information including the query can be found in

Table 4.

F.3 Simulation-based Calibration
We implemented SBC for both likelihood-weighted impor-

tance sampling and Pyro’s HMC. As hyperparameters for

SBC, we picked 𝐿 = 63 samples per simulation (following

the suggestion in [60] to take one less than a power of two)

and 𝑁 simulations with 𝑁 = 10𝐿 (also following the paper’s

suggestion). Note that the number of samples is much less

than the 10000 samples used for Figs. 1 and 7 (10 chains with

1000 samples each). But setting 𝐿 = 1000 would be at least

100 times slower because 𝑁 has to increase proportionally

to 𝐿. Also note that for Pyro, we ran HMC with 𝐿 warmup

steps before generating 𝐿 samples. Both importance samples

and HMC samples exhibited significant autocorrelation. As

suggested in [60], we applied thinning to reduce its effect,

choosing a thinning factor of around
𝐿
𝐿eff

where 𝐿eff is the

effective sample size.

Pedestrian example. For importance sampling, the rank

histogram looks fairly uniform (Fig. 11a), which means that

SBC does not detect an issue with the inference and thus

increases the confidence in the validity of the importance

samples. For Pyro’s HMC, simulation-based calibration is

very slow: the rank histogram (Fig. 11b) took 32 hours (!) to

produce. (Note that only 332 simulations could be used, the

rest were discarded because the acceptance rate was too low.)

The spikes at the boundary indicate that the samples have

high autocorrelation and in fact, the effective sample size 𝐿eff

was at most
𝐿
10
, often much lower (depending on the chain).

The suggestion in [60] is thus to apply thinning, with a factor

of
𝐿
𝐿eff

, which is at least 10 in our case. This would increase
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Table 4. Evaluation on selected benchmarks from [56]. We give the times (in seconds) and bounds computed by [56] and

GuBPI. The table agrees with Table 1 but spells out the full problem name and the exact query.

Tool from [56] GuBPI

Program Q Query 𝒕 Result 𝒕 Result

tug-of-war Q1 total_𝑎_𝑏 < total_𝑡_𝑠 1.29 [0.6126, 0.6227] 0.72 [0.6134, 0.6135]
tug-of-war Q2 total_𝑎_𝑠 < total_𝑏_𝑡 1.09 [0.5973, 0.6266] 0.79 [0.6134, 0.6135]
beauquier-etal-3 Q1 count < 1 1.15 [0.5000, 0.5261] 22.5 [0.4999, 0.5001]
example-book-simple Q1 count ≥ 2 8.48 [0.6633, 0.7234] 6.52 [0.7417, 0.7418]
example-book-simple Q2

★ count ≥ 4 10.3 [0.3365, 0.3848] 8.01 [0.4137, 0.4138]
example-cart Q1 count ≥ 1 2.41 [0.8980, 1.1573] 67.3 [0.9999, 1.0001]
example-cart Q2 count ≥ 2 2.40 [0.8897, 1.1573] 68.5 [0.9999, 1.0001]
example-cart Q3 count ≥ 4 0.15 [0.0000, 0.1150] 67.4 [0.0000, 0.0001]
example-ckd-epi-simple Q1

★ 𝑓1 ≤ 4.4 ∧ 𝑓 ≥ 4.6 0.15 [0.5515, 0.5632] 0.86 [0.0003, 0.0004]
example-ckd-epi-simple Q2

★ 𝑓1 ≥ 4.6 ∧ 𝑓 ≤ 4.4 0.08 [0.3019, 0.3149] 0.84 [0.0003, 0.0004]
example-fig6 Q1 𝑐 ≤ 1 1.31 [0.1619, 0.7956] 21.2 [0.1899, 0.1903]
example-fig6 Q2 𝑐 ≤ 2 1.80 [0.2916, 1.0571] 21.4 [0.3705, 0.3720]
example-fig6 Q3 𝑐 ≤ 5 1.51 [0.4314, 2.0155] 24.7 [0.7438, 0.7668]
example-fig6 Q4 𝑐 ≤ 8 3.96 [0.4400, 3.0956] 27.4 [0.8682, 0.9666]
example-fig7 Q1 𝑥 ≤ 1000 0.04 [0.9921, 1.0000] 0.18 [0.9980, 0.9981]
example4 Q1 𝑥 + 𝑦 > 10 0.02 [0.1910, 0.1966] 0.31 [0.1918, 0.1919]
example5 Q1 𝑥 + 𝑦 > 𝑧 + 10 0.06 [0.4478, 0.4708] 0.27 [0.4540, 0.4541]
herman-3 Q1 count < 1 0.47 [0.3750, 0.4091] 124 [0.3749, 0.3751]
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(a) Importance sampling for the

pedestrian example, thinning fac-

tor 100.
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(b) HMC for the pedestrian exam-

ple, no thinning. (Only 332 simu-

lations were used because the rest

had too low acceptance rates.)
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(c) NUTS for the binary Gaussian

mixture model, thinning factor 10.
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(d) NUTS for the two-dimensional
binary Gaussian mixture model,

thinning factor 10.

Figure 11. Simulation-based calibration: rank histogram plots (630 simulations with 63 samples each).

the running time of SBC by the same factor, to at least 300

hours, but probably 600 or more. We did not consider it a

good use of resources to carry out this experiment.

Binary Gaussian Mixture Model. We also considered

the binary GMM (Fig. 5c) and a two-dimensional version of

the same model. The spikes at the boundary could again be

a sign of high autocorrelation, but in this case, we already

applied thinning with a factor of 10 (again based on the effec-

tive sample size). Instead, as discussed in [60], this symmetric

U-shape indicates that the computed data-averaged poste-

rior is underdispersed relative to the prior distribution. This

interpretation is consistent with our knowledge about the

model: HMC only finds one mode in the posterior distribu-

tion and misses the others. Hence SBC successfully detects

the issue, and in the case of the higher-dimensional model,

it does so in less time than GuBPI (cf. Table 3). For the other

models, including the pedestrian example, GuBPI is faster.
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