
Guaranteed Bounds on Posterior Distributions of Discrete
Probabilistic Programs with Loops

FABIAN ZAISER, University of Oxford, United Kingdom
ANDRZEJ S. MURAWSKI, University of Oxford, United Kingdom
C.-H. LUKE ONG, Nanyang Technological University, Singapore

We study the problem of bounding the posterior distribution of discrete probabilistic programs with unbounded
support, loops, and conditioning. Loops pose the main difficulty in this setting: even if exact Bayesian inference
is possible, the state of the art requires user-provided loop invariant templates. By contrast, we aim to find
guaranteed bounds, which sandwich the true distribution. They are fully automated, applicable to more
programs and provide more provable guarantees than approximate sampling-based inference. Since lower
bounds can be obtained by unrolling loops, the main challenge is upper bounds, and we attack it in two ways.
The first is called residual mass semantics, which is a flat bound based on the residual probability mass of a
loop. The approach is simple, efficient, and has provable guarantees.

The main novelty of our work is the second approach, called geometric bound semantics. It operates on a
novel family of distributions, called eventually geometric distributions (EGDs), and can bound the distribution
of loops with a new form of loop invariants called contraction invariants. The invariant synthesis problem
reduces to a system of polynomial inequality constraints, which is a decidable problem with automated solvers.
If a solution exists, it yields an exponentially decreasing bound on the whole distribution, and can therefore
bound moments and tail asymptotics as well, not just probabilities as in the first approach.

Both semantics enjoy desirable theoretical properties. In particular, we prove soundness and convergence,
i.e. the bounds converge to the exact posterior as loops are unrolled further. We also investigate sufficient
and necessary conditions for the existence of geometric bounds. On the practical side, we describe Diabolo, a
fully-automated implementation of both semantics, and evaluate them on a variety of benchmarks from the
literature, demonstrating their general applicability and the utility of the resulting bounds.

CCS Concepts: • Mathematics of computing → Probabilistic inference problems; • Theory of compu-
tation→ Program reasoning; Program semantics; • Software and its engineering→ Formal methods.

Additional Key Words and Phrases: probabilistic programming, Bayesian inference, program analysis, guaran-
teed bounds, posterior distribution, moments, tail asymptotics, loop invariant synthesis, quantitative analysis

ACM Reference Format:
Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong. 2025. Guaranteed Bounds on Posterior Distributions
of Discrete Probabilistic Programs with Loops. Proc. ACM Program. Lang. 9, POPL, Article 38 (January 2025),
32 pages. https://doi.org/10.1145/3704874

1 Introduction
Probabilistic programming is a discipline that studies programming languages with probabilistic
constructs [Barthe et al. 2020]. The term is overloaded however. At the intersection with randomized
algorithms and program analysis, it usually means a programming language with a construct for

Authors’ Contact Information: Fabian Zaiser, University of Oxford, Oxford, United Kingdom, fabian.zaiser@cs.ox.ac.uk;
Andrzej S. Murawski, University of Oxford, Oxford, United Kingdom, andrzej.murawski@cs.ox.ac.uk; C.-H. Luke Ong,
Nanyang Technological University, Singapore, Singapore, luke.ong@ntu.edu.sg.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART38
https://doi.org/10.1145/3704874

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-5158-2002
HTTPS://ORCID.ORG/0000-0002-4725-410X
HTTPS://ORCID.ORG/0000-0001-7509-680X
https://doi.org/10.1145/3704874
https://orcid.org/0000-0001-5158-2002
https://orcid.org/0000-0002-4725-410X
https://orcid.org/0000-0001-7509-680X
https://doi.org/10.1145/3704874
https://www.acm.org/publications/policies/artifact-review-and-badging-current

38:2 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

probabilistic branching or sampling from probability distributions. As such, it is simply a language
to express programs with random numbers and researchers study program analysis techniques
for termination probabilities, safety properties, cost analysis, and others. At the intersection with
statistics and machine learning, probabilistic programming is used to express (Bayesian) statistical
models [van de Meent et al. 2018]. Bayesian inference is a very successful framework for reasoning
and learning under uncertainty: it updates prior beliefs about the world with observed data to
obtain posterior beliefs using Bayes’ rule. As such, the programming languages for Bayesian models
provide a construct for conditioning on data in addition to sampling from distributions. Since
Bayesian inference is a difficult problem, a lot of research focuses on inference algorithms, in
particular their correctness and efficiency. This paper contributes to both areas by developing
methods to bound the distributions arising from probabilistic programs, especially those with loops.

Example 1.1. To illustrate the concept, consider the following puzzle due to Elchanan Mossel.
You throw a fair six-sided die repeatedly until you get a 6. You observe only even
numbers during the throws. What is the expected number of throws (including the 6)
conditioned on this event?

This is a surprisingly tricky problem and most people get it wrong on the first try1, based on the
incorrect assumption that it is equivalent to throwing a die with only the three faces 2, 4, and 6.
Probability theory and statistics abound with such counterintuitive results (e.g. the Monty-Hall
problem), and probabilistic programming offers a precise way to disambiguate their description and
make them amenable to automatic analysis and inference tools. Mossel’s problem can be expressed
as the probabilistic program in Fig. 1. The program has a loop that samples a die until it shows 6,
and conditions on the number being even. In each iteration, the counter Throws is incremented.

1.1 Challenges
Throws := 0;Die := 0;
whileDie ≠ 6 {
Die ∼ Uniform{1, . . . , 6};
observeDie ∈ {2, 4, 6};
Throws += 1}

Fig. 1. A probabilistic program
with a loop and conditioning

Bayesian inference. In Bayesian inference, Bayes’ rule is used to
update prior distributions 𝑝 (𝜃) of model variables 𝜃 with observed
data 𝑥 to obtain posterior distributions: 𝑝 (𝜃 | 𝑥) =

𝑝 (𝑥 |𝜃)𝑝 (𝜃)
𝑝 (𝑥) .

In practice, such Bayesian statistical models are too complex for
manual calculations and inferring their posterior distribution is
a key challenge in Bayesian statistics. There are two approaches:
exact and approximate inference. Exact inference aims to find an
exact representation of the posterior distribution. Such methods
impose heavy restrictions on the supported probabilistic programs
and do not usually scale well. Practitioners therefore mostly use approximate methods that do not
aim to compute this distribution exactly, but rather to produce unbiased or consistent samples
from it. If the probabilistic program does not contain conditioning, samples can simply be obtained
by running the program. But with observations, program runs that violate the observations must
be rejected. Since the likelihood of the observations is typically low, simple rejection sampling is
inefficient, and thus practical samplers use more sophisticated techniques, such as Markov chain
Monte Carlo. While more scalable, these approaches typically do not provide strong guarantees on
the approximation error after a finite amount of time [Gelman et al. 2013, Section 11.5].

Loops. Loops are essential to the expressiveness of programming languages but notoriously hard
to analyze. This applies even more strongly to the probabilistic setting, where deciding properties
like termination is harder than in the deterministic setting [Kaminski and Katoen 2015]. Even if a
1In a survey on Gil Kalai’s blog, only 27% of participants chose the correct answer (https://gilkalai.wordpress.com/2017/09/
07/tyi-30-expected-number-of-dice-throws/).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

https://gilkalai.wordpress.com/2017/09/07/tyi-30-expected-number-of-dice-throws/
https://gilkalai.wordpress.com/2017/09/07/tyi-30-expected-number-of-dice-throws/

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:3

program does not use conditioning, loops can still make sampling difficult. For example, a program
may terminate almost surely, but its expected running time may be infinite. This prevents sampling-
based approaches since they need to run the program. Furthermore, many inference algorithms
are not designed to handle unbounded loops and may return erroneous results for such programs
[Beutner et al. 2022]. On the formal methods side, various approaches for probabilistic loop analysis
have been proposed, employing techniques such as martingales, moments, and generating functions
(see Section 7). If all program variables have finite support, the program can be translated to a
probabilistic transition system and techniques from probabilistic model checking can be used.
None of these analysis techniques can be applied to Example 1.1 however: methods from cost

analysis do not support conditioning and probabilistic model checking requires finite support (but
Throws is supported on N). The approach by Klinkenberg et al. [2024] via generating functions
is theoretically applicable, but requires the user to provide a loop invariant template, i.e. a loop
invariant where certain parameters may be missing. Unfortunately, such an invariant cannot always
be specified in their language [Klinkenberg et al. 2024, Example 25]. Even in cases where this is
possible, we argue that figuring out its shape is actually the hard part: it already requires a good
understanding of the probabilistic program and its distribution, so it is not a satisfactory solution.

1.2 Guaranteed Bounds
To deal with the above challenges, we investigate guaranteed bounds on the program distribution.
“Guaranteed” here refers to a method that computes deterministic (non-stochastic) results about
the mathematical denotation of a program [Beutner et al. 2022]. Such bounds are applicable more
often than exact inference, e.g. in the presence of loops/recursion, and provide more assurance than
approximate methods, which have at best stochastic guarantees. Why are such bounds useful?

Fig. 2. Histogram of samples from two infer-
ence algorithms (importance sampling and
Pyro’s HMC), and the guaranteed bounds
from Beutner et al. [2022]. The bounds show
that Pyro’s HMC produces wrong results.
(Source: Beutner et al. [2022])

Partial correctness properties. In quantitative program
analysis, one can verify safety properties by bounding
the probability of reaching an unsafe state. Bounding
reachability probabilities is also a common problem in
probabilistic model checking and quantitative program
verification, yet it has not seen much attention in the
context of probabilistic programming with conditioning,
aside from the work by Beutner et al. [2022] and Wang
et al. [2024]. Neither of those can bound moments of
infinite-support distributions, whereas our work finds
tight bounds on the expected value of Throws in Fig. 1
(see Section 6.4).

Checking approximate inference. In the context of
Bayesian inference, the bounds can be useful to check
and debug approximate inference algorithms and their
implementations. If the approximate results clearly con-
tradict the bounds, the inference algorithm is likely incorrect, or some of its assumptions are
violated, or it has not converged. Beutner et al. [2022] provide an example of this: the inference tool
Pyro yields wrong results for a probabilistic program with loops, but their bounds can detect this
issue (Fig. 2).2 Another problem with approximate inference is the tail behavior of the posterior

2The cause turned out to be an undocumented assumption in the inference algorithm. Pyro’s implementation seems to
assume that the dimension (number of samples in a program run) of the problem is constant, which is violated when
sampling inside probabilistic loops.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:4 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Table 1. Comparison of our two approaches with the most relevant related work on probabilistic programs
with loops. (Cond.: supports (Bayesian) conditioning; Inf.: allows branching on variables with infinite support;
Cont.: allows continuous distributions; Auto.: fully automated; Prob.: computes/bounds probabilities; Mom.:
computes/bounds moments; Tails: computes/bounds tail asymptotics of this shape; A.a. (always applicable):
yields a result for any program expressible in the respective language. Partial support is denoted by “∼”.)

Type Cond.? Inf.? Cont.? Auto.? Prob.? Mom.? Tails? A.a.?

Moosbrugger et al. [2022] exact ✗ ✗ ✓ ✓ ∼ ✓ 𝑂 (𝑛−𝑘) ✗

Beutner et al. [2022] bounds ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Wang et al. [2024] bounds ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

Klinkenberg et al. [2024] exact ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

Resid. mass sem. (Section 3) bounds ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

Geom. bounds (Section 4) bounds ✓ ✓ ✗ ✓ ✓ ✓ 𝑂 (𝑐𝑛) ✗

distribution, which is often crucial for the quality of the approximation [Liang et al. 2023]. Previous
work on guaranteed bounds [Beutner et al. 2022; Wang et al. 2024] does not address this aspect,
but our work can bound the tail behavior as well.

Problem statement. Given a probabilistic program with posterior distribution 𝜇 on N, our goal is
to bound:
(1) probability masses: given 𝑛 ∈ N, find 𝑙, 𝑢 ∈ [0, 1] such that 𝑙 ≤ P𝑋∼𝜇 [𝑋 = 𝑛] ≤ 𝑢;
(2) moments: given 𝑘 ∈ N, find 𝑙, 𝑢 ∈ R≥0 such that 𝑙 ≤ E𝑋∼𝜇 [𝑋𝑘] ≤ 𝑢;
(3) tail asymptotics: find 𝑐 ∈ [0, 1) such that P𝑋∼𝜇 [𝑋 = 𝑛] = 𝑂 (𝑐𝑛).

1.3 Contributions
In this paper, we develop two new methods to compute guaranteed bounds on the distribution of
discrete probabilistic programs with loops and conditioning. Lower bounds can simply be found by
unrolling each loop a finite number of times. The main challenge is upper bounds and we attack
it in two ways: the first is simple, always applicable, and efficient, but coarse; the second is more
sophisticated and expensive, but yields much more informative bounds if applicable. A summary
of the most relevant related work is presented in Table 1 and a detailed account in Section 7.

The first semantics, called residual mass semantics (Section 3), is based on the simple idea of
bounding the remaining probability mass after the loop unrollings, which has not previously been
described, to our knowledge. We make the following contributions:

• We introduce the residual mass as a simple but effective idea to bound posterior probabilities.
• We prove soundness and convergence of the bounds to the true distribution (as loops are
unrolled further and further).

• We implement the semantics in a tool called Diabolo and demonstrate empirically that the
implementation is more efficient than previous systems (Section 6.3).

The second semantics, called geometric bound semantics (Section 4), is the main novelty of this
paper. The idea is to bound the distribution of loops in a more fine-grained manner with geometric
tails, rather than a flat bound as in the first semantics.

• We present the concept of a contraction invariant for a loop, which yields upper bounds on
the distribution (Section 4.1).

• We introduce a family of distributions called eventually geometric distributions (EGDs) that
are used as an abstract domain to overapproximate the distribution of a loop (Section 4.2).

• We present the geometric bound semantics (Section 4.3) which reduces the synthesis problem of
such an invariant to solving a system of polynomial inequalities. If successful, it immediately

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:5

yields bounds on probability masses and, contrary to the first semantics, also on moments
and tail probabilities of the program distribution.

• We prove soundness of the semantics and convergence of the bounds, as loops are unrolled
further and further (Section 4.5).

• We identify necessary conditions and sufficient conditions for its applicability (Section 4.5).
• We fully automate it in our tool Diabolo (Section 5): contrary to previous work [Klinkenberg
et al. 2024], it does not rely on the user to provide a loop invariant (template).

• We demonstrate its applicability on a large proportion of benchmarks from the literature and
compare it with previous approaches and the residual mass semantics (Section 6).

Due to space constraints, proofs and some additional details had to be omitted. They can be
found in the full version of this paper [Zaiser et al. 2024].

1.4 Limitations
Our work deals with discrete probabilistic programs with hard conditioning. This means that
programs cannot sample or observe from continuous distributions. Variables in our programming
language take values in N; negative numbers are not supported (see Section 8.1 for possible
extensions). While our language is Turing-complete, some arithmetic operations like multiplication
as well as some common infinite-support distributions (e.g. Poisson) are not directly supported (see
Section 2.2 for details on our language’s expressivity). The initial values of the program variables
are fixed: our methods cannot reason parametrically about these inputs.
The residual mass semantics can yield bounds on the distribution of any such probabilistic

program, but convergence with increasing unrolling is only guaranteed if the program terminates
almost surely. If the program distribution has infinite support, we cannot bound the moments or
tails: the bound does not contain enough information for this.
The geometric bound semantics yields EGD bounds, which allow bounding moments and tails.

On the other hand, such bounds do not exist for all programs. Our experiments show that this is
not a big concern for many probabilistic programs with loops in practice: EGD bounds exist for a
majority of examples we found in the literature. Another limitation of EGD bounds is that they
cannot represent correlation of the tails of two variables, which may lead to imprecise tail bounds
or failing to find bounds at all. Finally, solving the system of polynomial inequalities arising from
the semantics, while decidable, can be hard in practice and does not scale to very large programs. It
should be noted that scalability is a general issue in probabilistic program analysis owing to the
hardness of the problem [Dagum and Luby 1993] and not specific to our work.

1.5 Notation and Conventions
We use the Iverson brackets [𝜑] to mean 1 if 𝜑 is satisfied and 0 otherwise. We write variables
representing vectors in bold (𝜶), tensors (multidimensional arrays) in uppercase and bold (T), and
random or program variables in uppercase (𝑋). We write 0 and 1 for the constant zero and one
functions. We write 0𝑛 and 1𝑛 for the zero and ones vector in R𝑛 . To set the 𝑘-th component of
𝜶 to 𝑣 , we write 𝜶 [𝑘 ↦→ 𝑣]. Vectors 𝜶 ∈ R𝑛 are indexed as 𝛼1, . . . , 𝛼𝑛 . We abbreviate [𝑑] := {0,
. . . , 𝑑 − 1}. Tensors T ∈ R[𝑑1]×···×[𝑑𝑛] are indexed as T𝑖1,...,𝑖𝑛 where 𝑖𝑘 ranges from 0 to 𝑑𝑘 − 1.
We write 0[𝑑1]×···×[𝑑𝑛] or simply 0 for the zero tensor in R[𝑑1]×···×[𝑑𝑛] . We write |T| = (𝑑1 . . . , 𝑑𝑛)
for the dimensions of T ∈ R[𝑑1]×···×[𝑑𝑛] , and in particular |T|𝑖 = 𝑑𝑖 . To index T along the 𝑘-th
dimension, wewriteT𝑘 :𝑗 ∈ R[𝑑1]×···×[𝑑𝑘−1]×[𝑑𝑘+1]×···×[𝑑𝑛] , which is defined by (T𝑘 :𝑗)𝑖1,...,𝑖𝑘−1,𝑖𝑘+1,...,𝑖𝑛 =

T𝑖1,...,𝑖𝑘−1, 𝑗,𝑖𝑘+1,...,𝑖𝑛 . We often write tensor indices as 𝒊 := (𝑖1, . . . , 𝑖𝑛) for brevity. We also abbreviate
𝜶 𝒊 :=

∏𝑛
𝑘=1 𝛼

𝑖𝑘
𝑖
. Other binary operations (+, −, min, max, etc.) work elementwise on vectors and

tensors, e.g. (𝜶 + 𝜷) 𝑗 := 𝛼 𝑗 + 𝛽 𝑗 and 𝜶 ≤ 𝜷 if and only if 𝛼 𝑗 ≤ 𝛽 𝑗 for all 𝑗 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:6 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

2 Background
2.1 Probability and Measure Theory
All probability spaces𝑀 in this work are equipped with the discrete 𝜎-algebra P(𝑀). The set of
measures on a space𝑀 is denoted by Meas(𝑀). The restriction of a measure 𝜇 ∈ Meas(𝑀) to a
set𝑀 ′ ⊆ 𝑀 is denoted by 𝜇 |𝑀 ′ . The mass function𝑚 : 𝑀 → [0, 1] of a measure 𝜇 ∈ Meas(𝑀) is
defined by𝑚(𝑥) := 𝜇 ({𝑥}). By abuse of notation, we will usually write 𝜇 for𝑚 as well. We will
use the words distribution andmeasure interchangeably, but a probability distribution is a
measure 𝜇 with total mass 𝜇 (𝑀) = 1. The 𝑘-thmoment of a distribution 𝜇 ∈ Meas(N) is defined as
E𝑋∼𝜇 [𝑋𝑘] := ∑

𝑥∈N 𝜇 (𝑥) · 𝑥𝑘 . The tail of a distribution refers to the region far away from the mean.
A distribution 𝜇 on N has tail asymptotics 𝑓 (𝑛) if 𝜇 (𝑛) = Θ(𝑓 (𝑛)). The Dirac(𝑥) distribution
has the mass function Dirac(𝑥) (𝑦) = [𝑥 = 𝑦]; the Bernoulli(𝜌) distribution for 𝜌 ∈ [0, 1] is
given by Bernoulli(𝜌) (0) = 1 − 𝜌 and Bernoulli(𝜌) (1) = 𝜌 ; the Uniform{𝑎, . . . , 𝑏} distribution for
𝑎 ≤ 𝑏 ∈ N by Uniform{𝑎, . . . , 𝑏}(𝑛) = [𝑎≤𝑛≤𝑏]

𝑏−𝑎+1 ; and the Geometric(𝜌) distribution for 𝜌 ∈ (0, 1] by
Geometric(𝜌) (𝑛) = (1 − 𝜌)𝑛 · 𝜌 .

2.2 Probabilistic Programming Language
Our programming language is a simple imperative language with a fixed number of variables 𝑿 =

(𝑋1, . . . , 𝑋𝑛). Each variable only takes values inN. We consider the following minimal programming
language where 𝑃 denotes programs and 𝐸 denotes events.

𝑃 ::= skip | 𝑃1; 𝑃2 | 𝑋𝑘 := 0 | 𝑋𝑘 += 𝑎 | 𝑋𝑘 ¤−= 1 | if 𝐸 {𝑃1} else {𝑃2} | while𝐸 {𝑃1} | fail
𝐸 ::= 𝑋𝑘 = 𝑎 | flip(𝜌) | ¬𝐸1 | 𝐸1 ∧ 𝐸2

where 𝑎 ∈ N, 𝜌 ∈ [0, 1] are literals. We explain the constructs briefly: skip does nothing; 𝑃1; 𝑃2
executes 𝑃1 and then 𝑃2; 𝑋𝑘 := 0 sets 𝑋𝑘 to 0; 𝑋𝑘 += 𝑎 increments 𝑋𝑘 by 𝑎; 𝑋𝑘 ¤−= 1 decrements
𝑋𝑘 by 1 but clamped at 0 (𝑋𝑘 := max(𝑋𝑘 − 1, 0)); if 𝐸 {𝑃1} else {𝑃2} executes 𝑃1 if the event 𝐸
occurs and 𝑃2 otherwise; while𝐸 {𝑃1} repeats 𝑃1 as long as 𝐸 occurs; fail states a contradictory
observation, i.e. observe false. The flip(𝜌) event occurs with probability 𝜌 , like a coin flip with bias
𝜌 coming up heads, or more formally, sampling 1 from an independent Bernoulli(𝜌) distribution.3
The logical operators ¬,∧ denote the complement and intersection of events. We usually assume
that all variables are set to zero with probability 1 at the beginning.

Syntactic sugar. The language is kept minimal to simplify the presentation. The following syn-
tactic sugar for events (on the left) and statements (on the right) will be convenient:

𝐸1 ∨ 𝐸2 { ¬(¬𝐸1 ∧ ¬𝐸2)
𝑋𝑘 ∈ {𝑎1, . . . , 𝑎𝑚} { 𝑋𝑘 = 𝑎1 ∨ · · · ∨ 𝑋𝑘 = 𝑎𝑚

𝑋𝑘 < 𝑎 { 𝑋𝑘 ∈ {0, . . . , 𝑎 − 1}
𝑋𝑘 ≤ 𝑎 { 𝑋𝑘 < 𝑎 + 1
𝑋𝑘 ≥ 𝑎 { ¬(𝑋𝑘 < 𝑎)
𝑋𝑘 > 𝑎 { ¬(𝑋𝑘 ≤ 𝑎)

𝑋𝑘 := 𝑐 { 𝑋𝑘 := 0;𝑋𝑘 += 𝑐

{𝑃1} [𝜌] {𝑃2} { if flip(𝜌) {𝑃1} else {𝑃2}
𝑋𝑘 ∼ Bernoulli(𝜌) { {𝑋𝑘 := 1} [𝜌] {𝑋𝑘 := 0}

observe𝐸 { if 𝐸 {skip} else {fail}

Sampling. The above language does not include a sampling construct, but sampling from the
following distributions can be encoded easily: all finite discrete distributions (e.g. Bernoulli, Binomial,
Uniform, Categorical), the Geometric and Negative Binomial distributions, as well as shifted versions
thereof. Finite discrete distributions can be expressed with branching and the flip(𝜌) event, similarly
3This construct is not usually considered an event because it does not correspond to a subset of the state space. We preferred
it to a separate sampling statement for convenience: it avoids auxiliary variables for conditionals and loops.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:7

𝜇 |𝑋𝑘=𝑎 (𝑆) := 𝜇 ({𝒙 ∈ 𝑆 | 𝑥𝑘 = 𝑎})
𝜇 |flip(𝜌) := 𝜌 · 𝜇 |N𝑛

𝜇 |¬𝐸1 := 𝜇 |N𝑛 − 𝜇 |𝐸1

𝜇 |𝐸1∧𝐸2 := (𝜇 |𝐸1) |𝐸2

(a) Standard semantics of events

JskipK (𝜇) = 𝜇

J𝑃1; 𝑃2K (𝜇) = J𝑃2K (J𝑃1K (𝜇))
J𝑋𝑘 := 0K (𝜇) (𝑆) = 𝜇 | (𝑆) + 𝜇 ({𝒙 ∈ N𝑛 | 𝒙 [𝑘 ↦→ 0] ∈ 𝑆})
J𝑋𝑘 += 𝑎K (𝜇) (𝑆) = 𝜇 | (𝑆) + 𝜇 ({𝒙 ∈ N𝑛 | 𝒙 [𝑘 ↦→ 𝑥𝑘 + 𝑎] ∈ 𝑆})
J𝑋𝑘 ¤−= 1K (𝜇) (𝑆) = 𝜇 | (𝑆) + 𝜇 ({𝒙 ∈ N𝑛 | 𝒙 [𝑘 ↦→ 𝑥𝑘 ¤− 1] ∈ 𝑆})

Jif 𝐸 {𝑃1} else {𝑃2}K (𝜇) = 𝜇 | + J𝑃1K (𝜇 |𝐸) + J𝑃2K (𝜇 |¬𝐸)
JfailK (𝜇) = 𝜇 (N𝑛) · Dirac()

Jwhile𝐸 {𝑃1}K = lfp(Φ𝐸,𝑃1)

(b) Standard semantics of statements

Fig. 3. Standard semantics for probabilistic programs

to Bernoulli(𝜌) shown above. The sampling construct 𝑋𝑘 ∼ Geometric(𝜌) can be expressed as
𝑋𝑘 := 0;while¬flip(𝜌) {𝑋𝑘 += 1}. A negative binomial distribution can be expressed similarly, as
a sum of i.i.d. geometrically distributed variables. Sampling from other distributions, such as the
Poisson distribution, can also be expressed in principle since our language is Turing-complete, but
we are not aware of a simple encoding.

Expressivity. Our language is similar to the cReDiP language in Klinkenberg et al. [2024], but
with more restricted sampling. Like cReDiP, our language does not support negative integers,
continuous distributions/variables, more complex arithmetic like multiplication, or comparisons of
two variables. Note that the non-probabilistic fragment of the language is already Turing-complete
because it can simulate a three-counter machine. Thus these missing constructs could be encoded
in principle, at the expense of program complexity.

2.3 Standard Semantics
The semantics of programs takes an input measure on the state space and yields an output mea-
sure. For probabilistic programs without conditioning, the state space of programs would be N𝑛
[Klinkenberg et al. 2020; Zaiser et al. 2023]. But in the presence of conditioning, we want to track
observations failures, so we add a failure state , which signifies a failed observation. If we just
represented failures by setting the measure to 0 (as in Zaiser et al. [2023]), we would not be able
to distinguish between observation failures and nontermination (see Klinkenberg et al. [2024]
for a detailed discussion). So the semantics of programs transforms measures on the state space
N𝑛 := N𝑛 ∪ { }. The intuitive idea is that when actually running a probabilistic program, fail
moves to the failure state and aborts the program.

Orders on measures and transformers. To define the semantics, we first need to define partial
orders on measures and measure transformers, both of which are standard [Kozen 1981]. Given two
measures 𝜇, 𝜈 on 𝑀 , we say that 𝜇 ⪯ 𝜈 if and only if 𝜇 (𝑆) ≤ 𝜈 (𝑆) for all sets 𝑆 ⊆ 𝑀 . On measure
transformers 𝜑,𝜓 : Meas(𝑀) → Meas(𝑀), we define the pointwise lifting of this order: 𝜑 ⊑ 𝜓 if
and only if 𝜑 (𝜇) ⪯ 𝜓 (𝜇) for all 𝜇 ∈ Meas(𝑀). Both orders are 𝜔-complete partial orders.

Semantics. The standard semantics is a straightforward adaptation of Klinkenberg et al. [2024];
Kozen [1981]. For events 𝐸, it describes how a measure 𝜇 on program states is “restricted” to 𝐸

(Fig. 3a), suggestively written 𝜇 |𝐸 like the restriction of 𝜇 to a subset of N𝑛 , even though some
events (e.g. flip(𝜌)) do not correspond to such a subset. For programs 𝑃 , the statement semantics
J𝑃K : Meas(N𝑛) → Meas(N𝑛) describes how 𝑃 transforms the measure on program states (Fig. 3b).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:8 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Regarding notation, we write 𝜇 | for 𝜇 |{ } , i.e. the restriction of 𝜇 to the failure state , and con-
versely 𝜇 |N𝑛 for the restriction of 𝜇 to N𝑛 , excluding the failure state . In Section 4, we will largely
ignore the failure state and work with distributions on N𝑛 . For this purpose, we introduce the
simplified standard semantics J𝑃K : Meas(N𝑛) → Meas(N𝑛) defined as J𝑃K(𝜇) := J𝑃K (𝜇) |N𝑛 .
An interesting case is the loop construct, whose semantics is Jwhile𝐸 {𝑃1}K := lfp(Φ𝐸,𝑃1) where

Φ𝐸,𝑃1 : (Meas(N𝑛) → Meas(N𝑛)) → (Meas(N𝑛) → Meas(N𝑛))
Φ𝐸,𝑃1 (𝜓) (𝜇) := 𝜇 | + 𝜇 |¬𝐸 +𝜓 (J𝑃1K (𝜇 |𝐸))

is the unrolling operator and lfp(Φ𝐸,𝑃1) denotes its least fixed point with respect to ⊑. Another way
to look at it is that𝑊 := Jwhile𝐸 {𝑃1}K is the least solution to the equation:

𝑊 (𝜇) = 𝜇 | + 𝜇 |¬𝐸 +𝑊 (J𝑃1K (𝜇 |𝐸)) ∀𝜇 ∈ Meas(N𝑛)

Conditioning. The fail construct moves all the mass to the failure state . Over the course of the
program, some of the initial probability mass gets lost due to nontermination and some moves
to the failure state due to failed observations. Ultimately, we are interested in the distribution
conditioned on the observations. These conditional probabilities of 𝑿 = 𝒙 ∈ N𝑛 are defined
as: P[𝑿 = 𝒙 | 𝑿 ≠] =

P[𝑿=𝒙∧𝑿≠]
P[𝑿≠] =

P[𝑿=𝒙]
1−P[𝑋=] . Thus we have to remove the mass on

from the subprobability measure 𝜇 of the program and normalize it, which is achieved by the
function normalize turning subprobability measures on N𝑛 into subprobability measures on N𝑛 :

normalize(𝜇) := 𝜇−𝜇 |
1−𝜇 () . Thus the posterior probability distribution of a program 𝑃 with initial

distribution 𝜇 (usually Dirac(0𝑛)) is given by normalize(J𝑃K (𝜇)). Operationally, we can think of
normalization as a rejection sampler of the posterior distribution: it runs the program repeatedly,
rejects all runs that end in , and only yields the results of the remaining runs as samples.

Nontermination. Due to the possibility of nontermination, even the normalized measure of a
program may not be a probability distribution, only a subprobability distribution (see the discussion
in Klinkenberg et al. [2024, Section 3.4]). For example, the loop while flip(1) {skip} will never
terminate, so both its unnormalized and normalized semantics are always the zero measure. This is
not a problem in practice because nontermination is usually considered a bug for statistical models.
Tracking observation failures is useful for defining termination, however.

Definition 2.1. A program 𝑃 is almost surely terminating on a finite measure 𝜇 ∈ Meas(N𝑛) if
J𝑃K (𝜇) (N𝑛) = 𝜇 (N𝑛).

The semantics of a program J𝑃K satisfies the usual properties listed below. The proof is analogous
to Klinkenberg et al. [2024].

Lemma 2.2. For any program 𝑃 , the transformation J𝑃K is linear and 𝜔-continuous, so in particular
monotonic. Also, the total measure does not increase: J𝑃K (𝜇) (N𝑛) ≤ 𝜇 (N𝑛) for all 𝜇 ∈ Meas(N𝑛).

3 Residual Mass Semantics
In this section, we first present the lower bound semantics based on loop unrolling. Since even
upper bounds on the normalized posterior require lower bounds on the normalizing constant, these
lower bounds are also used as part of our methods for upper bounds. The residual mass semantics
extends the lower bound semantics to obtain upper bounds on the unnormalized distribution as
well and can thus derive both lower and upper bounds on the normalized posterior. This way, any
exact inference method for the loop-free fragment can be transformed into a method to bound the
distribution of programs with loops. We present both semantics formally and prove soundness and
convergence. Full proofs are given in Zaiser et al. [2024].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:9

3.1 Lower Bounds via Unrolling
Lower bounds can be computed by unrolling the loop a finite number of times and discarding
the part of the distribution that has not exited the loop after the unrollings. Define the 𝑢-fold
unrolling 𝑃 (𝑢) of a program 𝑃 by unrolling each loop 𝑢 times:

(𝑃1; 𝑃2) (𝑢) := 𝑃
(𝑢)
1 ; 𝑃 (𝑢)

2

(if 𝐸 {𝑃1} else {𝑃2}) (𝑢) := if 𝐸 {𝑃 (𝑢)
1 } else {𝑃 (𝑢)

2 }

(while𝐸 {𝑃}) (𝑢) := (while𝐸 {𝑃}) (𝑢)0

(while𝐸 {𝑃}) (𝑢)𝑣 := if 𝐸 {𝑃 (𝑢) ; (while𝐸 {𝑃}) (𝑢)
𝑣+1} else {skip}; for 𝑣 < 𝑢

(while𝐸 {𝑃}) (𝑢)𝑢 := while𝐸 {𝑃 (𝑢) }
𝑃 (𝑢) := 𝑃 otherwise

Lemma 3.1. Unrolling does not change the semantics: J𝑃K = J𝑃 (𝑢)K for all programs 𝑃 and 𝑢 ∈ N.

The lower bound semantics J𝑃Klo is then defined just like J𝑃K except that Jwhile𝐸 {𝑃1}Klo (𝜇) :=
0. In other words, J𝑃Klo = J𝑃 ′K where 𝑃 ′ is the program 𝑃 where all loops are replaced by infinite
loops, effectively setting the measure to zero. Its correctness follows from the monotonicity of the
standard semantics.

Theorem 3.2 (Soundness of lower bounds). For all measures 𝜇 ∈ Meas(N𝑛) and programs 𝑃 , we
have J𝑃Klo (𝜇) ⪯ J𝑃K (𝜇).

The lower bounds will get better as loops are unrolled further and further. In fact, they will
converge to the true distribution.

Theorem 3.3 (Convergence of lower bounds). For all finite measures 𝜇 ∈ Meas(N𝑛) and programs
𝑃 , the lower bound J𝑃 (𝑢)Klo (𝜇) converges (in total variation distance) monotonically to the true
distribution J𝑃K (𝜇) as 𝑢 → ∞.

Note that the lower bound semantics involves only finite discrete distributions (assuming all
variables are initially zero), which can be represented exactly as an array of the probability masses.
In fact, any exact semantics for the loop-free fragment leads to lower bounds for programs with
loops. A related approach by Jansen et al. [2016] combines unrolling with probabilistic model
checking to obtain lower bounds on reachability probabilities and expectations.

3.2 Upper Bounds via Residual Mass
Lower bounds are easy because 0 is clearly a lower bound that can be used as a starting point
for the fixed point iteration. This strategy does not work for upper bounds since there is no such
obvious starting point.

Instead, a simple idea is to use the fact that the total mass of the state distribution can only decrease
after program execution (Lemma 2.2). In other words, for a program 𝑃 with initial distribution
𝜇 ∈ Meas(N𝑛), the total mass of the distribution after running 𝑃 is J𝑃K (𝜇) (N𝑛) ≤ 𝜇 (N𝑛). So the
part of the distribution that wemiss in the lower bounds by cutting loops short has a probabilitymass
bounded by the distance to the total mass 𝜇 (N𝑛) at the start. We call this gap the residual mass of
the program 𝑃 with initial measure 𝜇 and define it as J𝑃Kres (𝜇) := 𝜇 (N𝑛) − J𝑃Klo (𝜇) (N

𝑛
) ∈ R≥0.

The residual mass semantics uses the residual mass to bound probabilities J𝑃K (𝜇) (𝑆) of
the program distribution for a set 𝑆 ⊆ N𝑛 by analyzing the gap J𝑃K (𝜇) (𝑆) − J𝑃Klo (𝜇) (𝑆) as

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:10 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

follows. The gap is maximized if 𝑆 = N𝑛 and thus bounded by J𝑃K (𝜇) (N𝑛) − J𝑃Klo (𝜇) (N
𝑛
). Since

J𝑃K (𝜇) (N𝑛) ≤ 𝜇 (N𝑛) by Lemma 2.2, this gap is always bounded by the residual mass. The residual
mass semantics can also bound the normalizing constant 1 − J𝑃K (𝜇) () since J𝑃Klo (𝜇) () ≤
J𝑃K (𝜇) () ≤ J𝑃Klo (𝜇) () + J𝑃Kres (𝜇) where the lower bound follows from Theorem 3.2 and the
upper bound from the previous argument. Thus it also yields bounds on the (normalized) posterior
probabilities. The above soundness argument is made fully rigorous in the following theorem. We
also have a convergence theorem for the residual mass semantics, similar to Theorem 3.3.

Theorem 3.4 (Soundness of the residual mass semantics). Let 𝑃 be a program and 𝜇 ∈ Meas(N𝑛).
Then for all 𝑆 ⊆ N𝑛 , we can bound the unnormalized probabilities:

J𝑃Klo (𝜇) (𝑆) ≤ J𝑃K (𝜇) (𝑆) ≤ J𝑃Klo (𝜇) (𝑆) + J𝑃Kres (𝜇)
If 𝜇 is a probability measure and 𝑆 ⊆ N𝑛 , we can bound the posterior probabilities:

J𝑃Klo (𝜇) (𝑆)
1 − J𝑃Klo (𝜇) ()

≤ normalize(J𝑃K (𝜇)) (𝑆) ≤
J𝑃Klo (𝜇) (𝑆) + J𝑃Kres (𝜇)

1 − J𝑃Klo (𝜇) () − J𝑃Kres (𝜇)

Theorem 3.5 (Convergence of the residual mass semantics). Let 𝑃 be a program terminating
almost surely on a finite measure 𝜇 ∈ Meas(N𝑛). Then the residual mass J𝑃 (𝑢)Kres (𝜇) converges
monotonically to 0 as 𝑢 → ∞. In particular, the above bounds on normalize(J𝑃 (𝑢)K (𝜇)) (𝑆) converge
to the true posterior probability as 𝑢 → ∞.

Since the residual mass semantics only depends on the lower bounds, it can be implemented
using the same representations and techniques as the lower bound semantics. In particular, it
also involves only finite discrete distributions, representable as arrays of probability masses. We
illustrate the residual mass semantics with an example.

Example 3.6 (Residual mass semantics). Consider again the “die paradox” program (Example 1.1
and Fig. 1) where the variables are 𝑿 := (Throws,Die). After three unrollings, the lower bound
distribution 𝜇 := J𝑃 (3)Klo (𝜇0) for the initial distribution 𝜇0 = Dirac(0) is given by

𝜇 (𝒙) =


1
2 +

1
3 ·

1
2 = 2

3 if 𝒙 =
1
6 if 𝒙 = (1, 6)
1
3 ·

1
6 = 1

18 if 𝒙 = (2, 6)
0 otherwise

because the failure probability is 1
2 (for Die ∈ {1, 3, 5}) and the second iteration is entered in a state

other than with probability 1
3 (for Die ∈ {2, 4}). The residual mass is given by J𝑃 (3)Kres (𝜇0) =

𝜇0 (N𝑛) − 𝜇 (N𝑛) = 1− (23 +
1
6 +

1
18) =

1
9 . This yields the following bounds on J𝑃K (𝜇0) (𝑠) for 𝑠 ∈ N

𝑛
 :

J𝑃K (𝜇0) (𝒙) ∈


[23 ,

7
9] if 𝒙 =

[16 ,
5
18] if 𝒙 = (1, 6)

[1
18 ,

1
6] if 𝒙 = (2, 6)

[0, 19] otherwise

Hence the normalizing constant 1 − J𝑃K (𝜇0) is in [29 ,
1
3], which yields the following normalized

bounds. They are not very tight but can be improved by increasing the unrolling depth.

normalize(J𝑃K (𝜇0)) (𝒙) ∈


[16 · 3,

5
18 ·

9
2] = [12 ,

5
4] if 𝒙 = (1, 6)

[1
18 · 3,

1
6 ·

9
2] = [16 ,

3
4] if 𝒙 = (2, 6)

[0, 19 ·
9
2] = [0, 12] otherwise

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:11

4 Geometric Bound Semantics
Abig problemwith the residualmass semantics is that we can bound the total measure and individual
probabilities, but not moments and tail distributions of distributions with infinite support. This
problem cannot be fully resolved in general because moments do not always exist.

Example 4.1. The moments of the distribution of the following program are infinite:

𝑋 := 0;𝑌 := 1;
while flip(1/2) {

while𝑌 > 0 {𝑋 += 1;𝑌 ¤−= 1};
while𝑋 > 0 {𝑋 ¤−= 1;𝑌 += 2}; }

The loop body multiplies 𝑌 by 2 using the auxiliary variable 𝑋 . This program is almost surely
terminating and with result probabilities P[𝑋 = 0, 𝑌 = 2𝑚] = 2−𝑚 for𝑚 > 0 and zero elsewhere.
Hence the 𝑘-th moment of 𝑌 is E[𝑌𝑘] = ∑∞

𝑚=1 P[𝑋 = 0, 𝑌 = 2𝑚] · 2𝑘𝑚 ≥ ∑∞
𝑚=1 1 = ∞ for 𝑘 ≥ 1.

However, in many cases, more precise upper bounds can be found that also yield bounds on
moments and tails. There are two key ideas that make this geometric bound semantics possible:
contraction invariants and eventually geometric distributions (EGDs). Like the residual mass
semantics, it builds on the lower bound semantics to obtain bounds on the normalized posterior.

4.1 Contraction Invariants
If a loop 𝐿 = while𝐸 {𝐵} terminates almost surely on an initial distribution 𝜇, all the probability
mass that entered the loop must eventually exit the loop. Inspired by this observation, we consider
the following assumption:

J𝐵K (𝜇 |𝐸) ⪯ 𝑐 · 𝜇 with 0 ≤ 𝑐 < 1 (1)
In words: the probability distribution at the start of the next loop iteration decreases uniformly by
a factor of 𝑐 . This assumption looks very strong and is often violated in practice, but if we assume
for a minute that it holds, what can we derive? Recall the fixpoint equation of loops:

Jwhile𝐸 {𝐵}K (𝜇) = 𝜇 | + 𝜇 |¬𝐸 + Jwhile𝐸 {𝐵}K (J𝐵K (𝜇 |𝐸))
⪯ 𝜇 | + 𝜇 |¬𝐸 + 𝑐 · Jwhile𝐸 {𝐵}K (𝜇) by Eq. (1) and linearity

By rearranging, we find the upper bound Jwhile𝐸 {𝐵}K (𝜇) ⪯ 𝜇 | +𝜇 |¬𝐸
1−𝑐 .

Unfortunately, the initial distribution 𝜇 will usually not satisfy Eq. (1) directly. But we may be
able to increase 𝜇 to 𝜈 ⪰ 𝜇 such that 𝜈 satisfies J𝐵K (𝜈 |𝐸) ⪯ 𝑐 · 𝜈 with 0 ≤ 𝑐 < 1. We then call
𝜈 a contraction invariant or 𝑐-contraction invariant of 𝜇.4 Surprisingly, such a contraction
invariant 𝜈 can often be found in practice (see Section 6.1), and we can then derive the following
upper bound on the distribution after the loop: Jwhile𝐸 {𝐵}K (𝜇) ⪯ Jwhile𝐸 {𝐵}K (𝜈) ⪯ 𝜈 | +𝜈 |¬𝐸

1−𝑐 .

4.2 Eventually Geometric Distributions (EGDs)
How can we find such a contraction invariant 𝜈? We clearly have to restrict the candidate set for 𝜈 in
some way. Specifically, we consider a class of distributions that generalize geometric distributions.
Recall that a Geometric(𝛽) distribution has probability masses 𝑝 (𝑖) = 𝛽 (1 − 𝛽)𝑖 ∝ (1 − 𝛽)𝑖 with a
decay rate of 1 − 𝛽 . For the multivariate setting, we consider products of independent geometric
distributions, but with a twist: probabilities of small values are allowed to differ for additional
flexibility. This sectionmakes extensive use of vector and tensor notations as described in Section 1.5.
4The name is inspired by contraction mappings in mathematics where they describe functions 𝑓 : 𝑋 → 𝑌 of metric spaces
with 𝑑 (𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝑐 · 𝑑 (𝑥, 𝑦) with 𝑐 < 1.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:12 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Definition 4.2. Let P ∈ R[𝑑1+1]×···×[𝑑𝑛+1]
≥0 be an 𝑛-dimensional tensor and 𝜶 ∈ [0, 1)𝑛 . The 𝑛-

dimensional eventually geometric distribution (EGD) with initial block P and decay rates 𝜶 ,
written EGD(P,𝜶) ∈ Meas(N𝑛) is defined by the following mass function (for 𝒊 = (𝑖1, . . . , 𝑖𝑛) ∈ N𝑛):

EGD(P,𝜶) (𝒊) = Pmin(𝒊, |P |−1𝑛) ·𝜶max(𝒊−|P |+1𝑛,0𝑛) = Pmin(𝑖1,𝑑1),...,min(𝑖𝑛,𝑑𝑛)𝛼
max(𝑖1−𝑑1,0)
1 · · ·𝛼max(𝑖𝑛−𝑑𝑛,0)

𝑛

Note that an EGD is not necessarily a probability measure. One can think of EGD(P,𝜶) as a
scaled product of independentGeometric(1−𝛼𝑖) distributions, except it may differ in a finite “prefix”
of size 𝑑 𝑗 in each dimension 𝑗 . Outside this initial block, the probability masses are extended like in a
geometric distribution with decay rate 𝛼 𝑗 in each dimension 𝑗 . In other words: eventually, for values
𝑖 𝑗 > 𝑑 𝑗 , the 𝑗-th component of EGD(P,𝜶) behaves like a Geometric(1 − 𝛼 𝑗) distribution; hence
the name. EGDs were originally motivated by the shape of their generating function [Zaiser 2024b,
Appendix C.1]. They can be seen as a subclass of multivariate discrete phase-type distributions
[Campillo Navarro 2018]. (Discrete phase-type distributions [Neuts 1975] describe the absorption
time in a Markov chain with one absorbing state [Bladt and Nielsen 2017, Section 1.2.6].)

Example 4.3. Consider the two-dimensional EGD given by EGD(P, (𝛼1, 𝛼2)) with P ∈ R[2]×[2]
≥0 ,

i.e. P is a matrix P =

(
P0,0 P0,1
P1,0 P1,1

)
. Its probability masses are given in the following table:

EGD(P, (𝛼1, 𝛼2)) (𝑥1, 𝑥2) 𝑥2 = 0 𝑥2 = 1 𝑥2 = 2 . . . 𝑥2 = 𝑗

𝑥1 = 0 P0,0 P0,1 P0,1 · 𝛼2 . . . P0,1 · 𝛼 𝑗−1
2

𝑥1 = 1 P1,0 P1,1 P1,1 · 𝛼2 . . . P1,1 · 𝛼 𝑗−1
2

𝑥1 = 2 P1,0 · 𝛼1 P1,1 · 𝛼1 P1,1 · 𝛼1𝛼2 . . . P1,1 · 𝛼1 · 𝛼 𝑗−1
2

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑥1 = 𝑖 P1,0 · 𝛼𝑖−11 P1,1 · 𝛼𝑖−11 P1,1 · 𝛼𝑖−11 · 𝛼2 . . . P1,1 · 𝛼𝑖−11 · 𝛼 𝑗−1
2

Here we can see that after the initial block of size 2 × 2, the probability masses are extended with
decay rate 𝛼1 in the first dimension and 𝛼2 in the second dimension.

Why did we pick EGDs as the shape of our bounds? There are several reasons.
(1) Interpretability: EGDs can easily be understood as geometric distributions, where the proba-

bility masses for small values (up to some threshold) have been modified. The relationship
with the geometric distribution also makes it easier to compute its moments and the tail
asymptotics can be read directly off the parameter 𝜶 (see Theorem 4.5 below).

(2) Expressiveness: the reason we allow the “start” of the distribution to deviate from geometric
distributions is necessary for flexibility. If only exact geometric distributions were allowed,
typical program operations like increasing or decreasing a variable (i.e. shifting the geometric
distribution) could not be represented precisely enough and the whole approach would fail.

(3) Tractability: a sufficient condition for the order ⪯ is easy to check for EGDs, as we will see,
because the probability masses follow a simple pattern. In fact, this condition is equivalent
to the satisfiability of a system of polynomial inequalities. If we had based our semantics
on an extension of, say, negative binomial distributions (of which geometric distributions
are a special case), deciding the order would be harder because binomial coefficients start
appearing in the probability masses.

As evidence for interpretability and tractability, we show how to marginalize EGDs and how to
compute their moments. This is also needed to extract bounds on the moments from EGD bounds.

Lemma 4.4 (Marginalizing EGDs). Marginalizing out the 𝑘-th dimension from EGD(P,𝜶) yields
EGD(Q, 𝜷) with 𝜷 = (𝛼1, . . . , 𝛼𝑘−1, 𝛼𝑘+1, . . . 𝛼𝑛) and Q =

∑ |P |𝑘−2
𝑗=0 P𝑘 :𝑗 +

P𝑘 :|P|𝑘 −1
1−𝛼𝑘 .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:13

Theorem 4.5 (Moments and tails of EGDs). Let EGD(P, 𝛼) be a one-dimensional EGD with P ∈
R
[𝑑+1]
≥0 . Then its tail asymptotics is EGD(P, 𝛼) (𝑛) = 𝑂 (𝛼𝑛) and its 𝑘-th moment is

E𝑋∼EGD(P,𝛼) [𝑋𝑘] =
𝑑−1∑︁
𝑗=0

P𝑗 · 𝑗𝑘 +
P𝑑

1 − 𝛼

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝑑𝑘−𝑖E𝑌∼Geometric(1−𝛼) [𝑌 𝑖]

and can thus be computed from the 𝑘-th moment of a geometric distribution. In particular, the expected
value is E𝑋∼EGD(P,𝛼) [𝑋] = ∑𝑑−1

𝑗=0 P𝑗 · 𝑗 + P𝑑
1−𝛼

(
𝑑 + 𝛼

1−𝛼
)
.

Expansion of EGDs. When performing binary operations (e.g. comparison or addition) on EGDs,
it will often be convenient to assume that their initial blocks have the same size. In fact, one
can always expand the size of the initial block of an EGD without changing the distribution. For
example, the distribution from Example 4.3 can equivalently be represented as:

EGD
((
P0,0 P0,1
P1,0 P1,1

)
,𝜶

)
= EGD©­«©­«

P0,0 P0,1
P1,0 P1,1
P1,0𝛼1 P1,1𝛼1

ª®¬ ,𝜶 ª®¬ = EGD
((
P0,0 P0,1 P0,1𝛼2 P0,1𝛼2

2
P1,0 P1,1 P1,1𝛼2 P1,1𝛼2

2

)
,𝜶

)
More generally, given an EGD(P,𝜶), an expansion EGD(Q,𝜶) with |P| ≤ |Q| (meaning |P|𝑖 ≤ |Q|𝑖
for all 𝑖 = 1, . . . , 𝑛) is obtained by adding rows and columns with the appropriate factors of 𝛼𝑖 , as
follows:

Q𝒊 = Pmin(𝒊, |P |−1𝑛)𝜶
max(𝒊−|P |+1𝑛,0𝑛) = Pmin(𝑖1, |P |1−1),...,min(𝑖𝑛, |P |𝑛−1)𝛼

max(𝑖1−|P |1+1,0)
1 · · ·𝛼max(𝑖𝑛−|P |𝑛+1,0)

𝑛

Order of EGDs. To decide EGD(P,𝜶) ⪯ EGD(Q, 𝜷) for P and Q of the same size |P| = |Q|, one
might hope that this would be equivalent to P ≤ Q and 𝜶 ≤ 𝜷 (both elementwise), because such a
simple conjunction of inequalities would be easy to check. To extend this idea to EGDs EGD(P,𝜶),
EGD(Q, 𝜷) of different sizes, we first have to expand them to the same size max(|P|, |Q|). Inlining
the definition of expansion, we obtain the following order.

Definition 4.6 (Order of EGDs). The order EGD(P,𝜶) ⪯EGD EGD(Q, 𝜷) is defined to hold if and
only if for all 𝒊 < max(|P|, |Q|) (using the notation explained in Section 1.5):

𝜶 ≤ 𝜷 ∧ Pmin(𝒊, |P |−1𝑛)𝜶
max(𝒊−|P |+1𝑛,0𝑛) ≤ Qmin(𝒊, |Q |−1𝑛)𝜷

max(𝒊−|Q |+1𝑛,0𝑛)

Example 4.7. Consider the EGD(P,𝜶) from Example 4.3 with |P| = (2, 2) and the two-dimensional
EGD(Q, 𝜷) with |Q| = (1, 4) andQ =

(
Q0,0 Q0,1 Q0,2 Q0,3

)
. Then EGD(P,𝜶) ⪯EGD EGD(Q, 𝜷)

is equivalent to the following system of inequalities:

𝛼1 ≤ 𝛽1 P0,0 ≤ Q0,0 P0,1 ≤ Q0,1 P0,1 · 𝛼2 ≤ Q0,2 P0,1 · 𝛼2
2 ≤ Q0,3

𝛼2 ≤ 𝛽2 P1,0 ≤ Q0,0 · 𝛽1 P1,1 ≤ Q0,1 · 𝛽1 P1,1 · 𝛼2 ≤ Q0,2 · 𝛽1 P1,1 · 𝛼2
2 ≤ Q0,3 · 𝛽1

Unfortunately, this order ⪯EGD is not exactly the same as ⪯ because zero coefficients at the edge of
P can make 𝜶 irrelevant, e.g. EGD(0, 𝛼) = 0 for any 𝛼 ∈ [0, 1). Thus 0 = EGD(0, 𝛼) ⪯ EGD(1, 0) =
Dirac(0) even though EGD(0, 𝛼) ̸⪯EGD EGD(1, 0) for 𝛼 > 0. However, such counterexamples are
rare in practice, and ⪯EGD does imply ⪯, as the following lemma shows. As a consequence, working
with the simpler order ⪯EGD instead of ⪯ is sufficient to establish bounds.

Lemma 4.8. If EGD(P,𝜶) ⪯EGD EGD(Q, 𝜷), then EGD(P,𝜶) ⪯ EGD(Q, 𝜷).

4.3 Semantics
Using the ideas from the previous sections, we define a compositional semantics J𝑃Kgeo for upper
bounds on the unnormalized distribution of 𝑃 . It is called geometric bound semantics because it
operates on eventually geometric distribution bounds due to their desirable properties mentioned

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:14 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Event 𝐸 Restriction EGD(P,𝜶) |geo
𝐸

of EGD(P,𝜶) to the event 𝐸

𝑋𝑘 = 𝑎 EGD(Q,𝜶 [𝑘 ↦→ 0])
where |Q| = |P| [𝑘 ↦→ max(|P|𝑘 , 𝑎 + 2)]
withQ𝑘 :𝑗 = P𝑘 :min(𝑗, |P |𝑘−1) ·𝛼

max(0, 𝑗−|P |𝑘+1)
𝑘

· [𝑗 = 𝑎] for 𝑗 = 0, . . . , |Q|𝑘−1
flip(𝜌) EGD(𝜌 · P,𝜶)
¬𝐸1 EGD(Q,𝜶)

where EGD(P,𝜶) |geo
𝐸1

= EGD
(
R,𝜸

)
|Q| = |R| and Q𝒊 = Pmin(𝒊, |P |−1𝑛) · 𝜶max(𝒊−|P |+1𝑛,0𝑛) − R𝒊 ∀𝒊 ≤ |Q|

𝐸1 ∧ 𝐸2
(
EGD(P,𝜶) |geo

𝐸1

)���geo
𝐸2

Fig. 4. Geometric bound semantics for events

in Section 4.2. It also turns out that EGDs are closed under many operations we require: restricting
to events, marginalizing, and adding or subtracting constants from variables.

The semantics J𝑃Kgeo operates on distributions on N𝑛 , not N𝑛 . We do not track the failure state
 in this semantics, because the geometric bound semantics is only applicable to almost surely
terminating programs (see Theorem 4.16), so there is no need to distinguish between observation
failure and nontermination. Like in the residual mass semantics, we can bound the normalizing
constant with the help of the lower bound semantics (see Theorem 4.13).

Relational semantics. Since there may be more than one upper bound, J𝑃Kgeo is not a function,
but a binary relation on EGDs. The idea is that (EGD(P,𝜶), EGD(Q, 𝜷)) ∈ J𝑃Kgeo, also written
EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷), ensures that J𝑃K(EGD(P,𝜶)) ⪯ EGD(Q, 𝜷). If this EGD(Q, 𝜷) is
unique for a given EGD(P,𝜶), we will use function notation: J𝑃Kgeo (EGD(P,𝜶)) = EGD(Q, 𝜷).
Like ⪯EGD, the relation J𝑃Kgeo depends on the representations (P,𝜶), (Q, 𝜷) of the involved EGDs
EGD(P,𝜶) and EGD(Q, 𝜷), not just their measures.

Event semantics. The event semantics EGD(P,𝜶) |geo
𝐸

computes an EGD representation of the
standard event semantics EGD(P,𝜶) |𝐸 (Fig. 4). The restriction EGD(Q, 𝜷) := EGD(P,𝜶) |geo

𝐸
is

generally computed by expanding the initial block P (if necessary) and then zeroing its entries not
corresponding to the event 𝐸. An important property is that EGD(Q, 𝜷) = EGD(Q,𝜶).
For the event 𝑋𝑘 = 𝑎, we have to set the coefficients of P𝑘 :𝑗 to zero for 𝑗 ≠ 𝑎. For this, we first

have to expand P to Q with |Q|𝑘 = 𝑎 + 2 if necessary. Then we set Q𝑘 :𝑗 = 0 for 𝑗 ≠ 𝑎 to ensure that
all coefficients different from 𝑎 are zero, and also set 𝛼𝑘 = 0. For instance, the EGD from Example 4.3
restricted to the event 𝑋2 = 2 is

EGD
((
P0,0 P0,1
P1,0 P1,1

)
,𝜶

)����geo
𝑋2=2

= EGD
((
0 0 P0,1 · 𝛼2 0
0 0 P1,1 · 𝛼2 0

)
, (𝛼1, 0)

)
Next, the event flip(𝜌) is independent of the current distribution, so we can simply multiply the
initial block P by the probability 𝜌 . For the complement ¬𝐸1, we first compute the restriction
EGD(P,𝜶) |geo

𝐸1
= EGD

(
R,𝜸

)
. Since EGD

(
R,𝜸

)
= EGD(R,𝜶) by the property mentioned above, we

can compute its complement EGD(Q,𝜶) := EGD(P,𝜶) −EGD(R,𝜶) by first expanding EGD(P,𝜶)
to EGD(P′,𝜶) with P′ of the same size as R, and then subtracting Q := P′ − R. So the result is
EGD(Q,𝜶). Continuing the above example with the event ¬(𝑋2 = 2), we get:

EGD(P,𝜶) |geo¬(𝑋2=2) = EGD(P,𝜶) − EGD(P,𝜶) |geo
𝑋2=2 = EGD

((
P0,0 P0,1 0 P0,1 · 𝛼2

2
P1,0 P1,1 0 P1,1 · 𝛼2

2

)
,𝜶

)
Finally, the restriction to an intersection 𝐸1 ∧ 𝐸2 is computed by restricting to 𝐸1 and then to 𝐸2.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:15

Statement 𝑃 Constraints for EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷)

skip 𝜷 = 𝜶 ∧ Q = P
𝑃1; 𝑃2 ∃R,𝜸 . EGD(P,𝜶) J𝑃1Kgeo EGD

(
R,𝜸

)
∧ EGD

(
R,𝜸

)
J𝑃2Kgeo EGD(Q, 𝜷)

𝑋𝑘 := 0 𝜷 = 𝜶 [𝑘 ↦→ 0] ∧ Q𝑘 :0 =
P𝑘 : |P |𝑘−1
1 − 𝛼𝑘

+
|P |𝑘−2∑︁
𝑗=0

P𝑘 :𝑗 ∧ Q𝑘 :1 = 0

where |Q| = |P| [𝑘 ↦→ 2]

𝑋𝑘 += 𝑎 𝜷 = 𝜶 ∧
|Q |𝑘−1∧
𝑗=0

Q𝑘 :𝑗 =

{0 if 𝑗 < 𝑎

P𝑘 :𝑗−𝑎 else
where |Q| = |P| [𝑘 ↦→ |P|𝑘 + 𝑎]

𝑋𝑘 ¤−= 1 𝜷 = 𝜶 ∧
|Q |𝑘−1∧
𝑗=0

Q𝑘 :𝑗 =

{
P𝑘 :0 + P𝑘 :min(|P |𝑘−1,1) · 𝛼

max(2−|P |𝑘 ,0) if 𝑗 = 0

P𝑘 :min(|P |𝑘−1, 𝑗+1) · 𝛼
max(𝑗+2−|P |𝑘 ,0) else

where |Q| = |P| [𝑘 ↦→ max(|P|𝑘 − 1, 2)]
if 𝐸 {𝑃1} else {𝑃2} ∃R, S,𝜸 , 𝜹 . EGD(P,𝜶) |geo

𝐸
J𝑃1Kgeo EGD

(
R,𝜸

)
∧ EGD(P,𝜶) |geo¬𝐸 J𝑃2Kgeo EGD(S, 𝜹)

∧
(
EGD

(
R,𝜸

)
, EGD(S, 𝜹), EGD(Q, 𝜷)

)
∈ Join (see Definition 4.9)

while𝐸 {𝑃} ∃𝑐,R, S,𝜸 , 𝜹 . 0 ≤ 𝑐 < 1 ∧ EGD(P,𝜶) ⪯EGD EGD
(
R,𝜸

)
∧ EGD

(
R,𝜸

) ��geo
𝐸

J𝑃Kgeo EGD(S, 𝜹) ∧ EGD(S, 𝜹) ⪯EGD EGD
(
𝑐 · R,𝜸

)
∧ EGD

(
R

1−𝑐 ,𝜸
)���geo
¬𝐸

= EGD(Q, 𝜷)
fail 𝜷 = 0𝑛 ∧ Q = 0[1]×···×[1]

Fig. 5. Geometric bound semantics for statements

Statement semantics. The statement semantics is a binary relation J𝑃Kgeo on EGDs. It defines
EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷) by induction on the structure of 𝑃 via constraints on P,𝜶 ,Q, 𝜷 (Fig. 5)
and ensures J𝑃K(EGD(P,𝜶)) ⪯ EGD(Q, 𝜷). The semantics of skip is the identity relation and 𝑃1; 𝑃2
is relational composition. Since fail corresponds to observing a zero-probability event, its right-hand
side is a zero distribution. For 𝑋𝑘 := 0, we essentially have to marginalize out the 𝑘-th dimension
(see Lemma 4.4) and then put all the probability mass on 𝑋𝑘 = 0. For instance, applying J𝑋2 := 0Kgeo
to the EGD(P,𝜶) from Example 4.3, yields the unique right-hand side

EGD(Q, 𝜷) = EGD

((
P0,0 + P0,1

1−𝛼2
0

P1,0 + P1,1
1−𝛼2

0

)
, (𝛼1, 0)

)
For 𝑋𝑘 += 𝑐 , we shift the coefficients to the right by 𝑐 in the 𝑘-th dimension, and fill up with zeros.
For instance, applying J𝑋2 += 2Kgeo to the above EGD yields the unique right-hand side

EGD(Q, 𝜷) = EGD
((
0 0 P0,0 P0,1
0 0 P1,0 P1,1

)
,𝜶

)
For 𝑋𝑘 ¤−= 1, we shift the coefficients to the left by 1 in the 𝑘-th dimension, except for P𝑘 :0, which
stays at index 0, so we get the sum of P𝑘 :0 and P𝑘 :1 at index 0. This special case requires |Q|𝑘 ≥ 2, so
we may first have to expand P to ensure |P|𝑘 ≥ 3, which is done implicitly in Fig. 5. As an example,
applying J𝑋2 ¤−= 1Kgeo to the above EGD yields the unique right-hand side

EGD(Q, 𝜷) = EGD
((
P0,0 + P0,1 P0,1 · 𝛼2
P1,0 + P1,1 P1,1 · 𝛼2

)
,𝜶

)
Conditionals. The semantics of if 𝐸 {𝑃1} else {𝑃2} is more complex. We first require the exis-

tence of bounds on both branches (EGD
(
R,𝜸

)
and EGD(S, 𝜹)), whose constraints are given by:

EGD(P,𝜶) |geo
𝐸

J𝑃1Kgeo EGD
(
R,𝜸

)
and EGD(P,𝜶) |geo¬𝐸 J𝑃2Kgeo EGD(S, 𝜹). Finally, we would like to

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:16 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

sum the bounds on the branches to obtain a bound on the whole conditional. However the sum of
two EGDs may not be an EGD. Instead, we define a join EGD(Q, 𝜷) as an upper bound on the sum
EGD

(
R,𝜸

)
+ EGD(S, 𝜹) of a certain shape.

Definition 4.9 (Join relation). We say EGD(Q, 𝜷) is a join of EGD
(
R,𝜸

)
and EGD(S, 𝜹), and write

(EGD
(
R,𝜸

)
, EGD(S, 𝜹), EGD(Q, 𝜷)) ∈ Join, if 𝜸 ≤ 𝜷, 𝜹 ≤ 𝜷 and there are expansions EGD

(
R′,𝜸

)
of EGD

(
R,𝜸

)
and EGD(S′, 𝜹) of EGD(S, 𝜹), of the same size, such thatQ = R′+S′. We also define the

strict join relation Join∗ ⊂ Join that strengthens the condition 𝜷 ≥ max(𝜸 , 𝜹) to 𝜷 = max(𝜸 , 𝜹).

As an example, the minimal-size join of EGD(P,𝜶) and EGD(Q, 𝜷) from Example 4.7 is given by

EGD
((

P0,0 + Q0,0 P0,1 + Q0,1 P0,1 · 𝛼2 + Q0,2 P0,1 · 𝛼2
2 + Q0,3

P1,0 + Q0,0 · 𝛽1 P1,1 + Q0,1 · 𝛽1 P1,1 · 𝛼2 + Q0,2 · 𝛽1 P1,1 · 𝛼2
2 + Q0,3 · 𝛽1

)
, (𝛾1, 𝛾2)

)
with 𝛼1, 𝛽1 ≤ 𝛾1 < 1 and 𝛼2, 𝛽2 ≤ 𝛾2 < 1. It is a strict join if 𝛾1 = max(𝛼1, 𝛽1) and 𝛾2 = max(𝛼2, 𝛽2).
We use normal joins in the semantics because strict joins would introduce maxima in the constraints,
making them harder to solve. Strict joins are useful for theoretical analysis, however.

Loops. Bounding a loop while𝐸 {𝐵} requires the existence of a contraction invariant EGD
(
R,𝜸

)
and a contraction factor 𝑐 ∈ [0, 1) (see Section 4.1), satisfying the following conditions. First, the
initial distribution has to be bounded by the invariant: EGD(P,𝜶) ⪯EGD EGD

(
R,𝜸

)
. Second, the

invariant has to decrease by a factor of 𝑐 in each loop iteration, which is encoded as: there exists
an EGD(S, 𝜹) such that EGD

(
R,𝜸

) ��geo
𝐸

J𝐵Kgeo EGD(S, 𝜹) and EGD(S, 𝜹) ⪯EGD EGD
(
𝑐 · R,𝜸

)
. Then

EGD(Q, 𝜷) := EGD
(R
1−𝑐 ,𝜸

) ��geo
¬𝐸 is an upper bound on Jwhile𝐸 {𝐵}K(EGD(P,𝜶)), as discussed in

Section 4.1.

Nondeterminism. Note that there are two places in the semantics where choices have to be made:
conditionals and loops. This nondeterminism is the reason why the semantics J−Kgeo is a relation
instead of a function. For if 𝐸 {𝑃1} else {𝑃2}, the choice is in the join operation: concretely, the size
of the expansion of the two distributions. For while𝐸 {𝑃}, the choice is in the contraction invariant
EGD

(
R,𝜸

)
and the factor 𝑐 . First of all, the dimensions |R| have to be chosen. How we do this

in practice is discussed in Section 5. Once the size of R is chosen, the conditions on R reduce to
polynomial inequality constraints (a decidable problem). Of course, we typically want to find a
“good” solution to these constraints by optimizing some objective (see Section 5.2).

4.4 Examples
Example 4.10 (Simple counter). Consider a simple program representing a geometric distribution:

while flip(1/2) {𝑋1 += 1}

The starting state of the program is described by EGD(1, 0). Assume a 𝑐-contraction invariant
EGD(𝑝, 𝛼) exists with 𝑝 ∈ R≥0 � R

[1]
≥0 and 𝛼 ∈ [0, 1). Then the constraint EGD(1, 0) ⪯EGD

EGD(𝑝, 𝛼) yields the inequalities 𝑝 ≥ 1, 𝛼 ≥ 0.
Let the loop body be 𝐵 := (𝑋1+=1). We find EGD(𝑝, 𝛼) |geoflip(1/2) J𝐵K

geo EGD
((
0 𝑝

2
)
, 𝛼

)
. The con-

straint for the contraction invariant is EGD
((
0 𝑝

2
)
, 𝛼

)
⪯EGD EGD(𝑐 · 𝑝, 𝛼) = EGD

((
𝑐𝑝 𝑐𝑝𝛼

)
, 𝛼

)
and amounts to 𝑝 ≥ 1 (from above) and 1

2 ≤ 𝑐 · 𝛼 with 𝑐 < 1. The bound on the whole loop is
then given by 1

1−𝑐 EGD(𝑝, 𝛼) |geo¬flip(1/2) = EGD
(

𝑝

2(1−𝑐) , 𝛼
)
. To get a low upper bound, it is best to set

𝑝 = 1. How to choose 𝛼 and 𝑐 is not clear because decreasing 𝛼 will increase 1
1−𝑐 and vice versa.

To optimize the asymptotics of the tail probabilities P[𝑋1 = 𝑛] as 𝑛 → ∞, we want to choose 𝛼
as small as possible, i.e. very close to 1

2 , accepting that this will make 1
1−𝑐 ≥ 2𝛼

2𝛼−1 large. This yields

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:17

the bound J𝑃K(EGD(1, 0)) ⪯EGD EGD
((1+2𝜀

4𝜀
)
, 12 + 𝜀

)
, i.e. P[𝑋1 = 𝑛] ≤

(1
4𝜀 +

1
2
) (1

2 + 𝜀
)𝑛 , see Zaiser

et al. [2024].
To optimize the bound on the expected value of𝑋1, we want to minimize the bound 𝛼

2(1−𝑐) (1−𝛼)2 ≥
E[𝑋1] from Theorem 4.5. This is achieved under the constraints 0 ≤ 𝛼, 𝑐 < 1 and 1

2 ≤ 𝛼𝑐 for
𝛼 =

√
5−1
2 ≈ 0.618 and 𝑐 =

√
5+1
4 ≈ 0.809. At this point, the bound on the expected value is

E[𝑋1] ≤ 11+5
√
5

2 ≈ 11.09. This is quite a bit more than the true value of 1, but it is a finite bound
that can be found fully automatically. It can be improved by unrolling the loop a few times before
applying the above procedure. This way, our implementation finds much better bounds (see Table 5).

Example 4.11 (Asymmetric random walk). Consider the program representing a biased random
walk on N, starting at 1, and stopping when reaching 0:

𝑋1 := 1;𝑋2 := 0;while𝑋1 > 0 {𝑋2 += 1; {𝑋1 += 1} [𝑟] {𝑋1 ¤−= 1}}
where𝑋1 is the current position,𝑋2 is the number of steps taken, and the bias 𝑟 < 1

2 is the probability
of going right. Denote the loop body by 𝐵 := (𝑋2 += 1; {𝑋1 += 1} [𝑟] {𝑋1 ¤−= 1}). We find

EGD(1, (0, 0)) J𝑋1 := 1;𝑋2 := 0Kgeo EGD
((
0
1

)
, (0, 0)

)
as the distribution before the loop. Assume a 𝑐-contraction invariant EGD(P,𝜶) with P ∈ R[2]×[1]

≥0
exists. Then one loop iteration transforms it as follows (details in Zaiser et al. [2024]):

EGD
((
P0,0
P1,0

)
,𝜶

)
J𝐵Kgeo EGD©­«©­«

0 (1 − 𝑟)P1,0
0 (1 − 𝑟)𝛼1P1,0
0 (1 − 𝑟)𝛼2

1P1,0 + 𝑟P1,0

ª®¬ ,𝜶 ª®¬
This yields the following constraints for the loop invariant:

EGD
((
0
1

)
, (0, 0)

)
⪯EGD EGD

((
P0,0
P1,0

)
,𝜶

)
EGD©­«©­«

0 (1 − 𝑟)P1,0
0 (1 − 𝑟)𝛼1P1,0
0 (1 − 𝑟)𝛼2

1P1,0 + 𝑟P1,0

ª®¬ ,𝜶 ª®¬ ⪯EGD EGD
((
𝑐P0,0
𝑐P1,0

)
,𝜶

)
= EGD©­«©­«

𝑐P0,0 𝑐𝛼2P0,0
𝑐P1,0 𝑐𝛼2P1,0
𝑐𝛼1P1,0 𝑐𝛼1𝛼2P1,0

ª®¬ ,𝜶 ª®¬
which reduce to the following polynomial constraints:

0 ≤ P0,0 1 ≤ P1,0 (1−𝑟)P1,0 ≤ 𝑐𝛼2P0,0 (1−𝑟)𝛼1P1,0 ≤ 𝑐𝛼2P1,0 (1−𝑟)𝛼2
1P1,0+𝑟P1,0 ≤ 𝑐𝛼1𝛼2P1,0

besides the obvious ones (every variable is nonnegative and 𝛼1, 𝛼2, 𝑐 ∈ [0, 1)). The projection of the
solution set to 𝛼1, 𝛼2 is shown in Fig. 6 for 𝑟 = 1

4 . The most interesting constraint is the last one,

which has the solutions 𝛼1 ∈
[
𝑐𝛼2−

√
𝑐2𝛼2

2−4𝑟 (1−𝑟)
2(1−𝑟) ,

𝑐𝛼2+
√
𝑐2𝛼2

2−4𝑟 (1−𝑟)
2(1−𝑟)

]
. It can be shown (see Zaiser

et al. [2024]) that such an 𝛼1 < 1 exists if and only if 𝑟 < 1
2 , which makes sense because for 𝑟 ≥ 1

2 ,
the program has infinite expected running time (see Theorem 4.16). Then all constraints are in fact
satisfiable and we get a bound on the distribution of the program:

EGD(1, (0, 0)) J𝑃Kgeo EGD

((
P0,0
1−𝑐
P1,0
1−𝑐

)
,𝜶

)�����geo
¬(𝑋1>0)

= EGD
((P0,0

1−𝑐
0

)
, (0, 𝛼2)

)
The asymptotic bound is P[𝑋2 = 𝑛] = P0,0

1−𝑐𝛼
𝑛
2 , so it’s best for 𝛼2 as small as possible. Since 𝛼2 ≥√

4𝑟 (1−𝑟)
𝑐

> 2
√︁
𝑟 (1 − 𝑟), the best possible geometric tail bound for Pr[𝑋2 = 𝑛] is𝑂 ((2

√︁
𝑟 (1 − 𝑟)+𝜀)𝑛).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:18 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

0.0 0.2 0.4 0.6 0.8 1.0
α1

0.0

0.2

0.4

0.6

0.8

1.0

α 2

Fig. 6. Solution set for Example 4.11,
projected onto 𝛼1, 𝛼2 for 𝑟 = 1

4

Interestingly, the exact asymptotic is Θ((2
√︁
𝑟 (1 − 𝑟))𝑛 ·𝑛−3/2)

(see Zaiser et al. [2024]), so the best possible geometric bound
is 𝑂 ((2

√︁
𝑟 (1 − 𝑟))𝑛) and our method can get arbitrarily close to

it. We could find a bound on E[𝑋2] in the same way as in the
previous example, but this would be tedious to do manually. Our
implementation (again using loop unrolling before applying the
above reasoning) finds the bounds shown in Table 5 (for 𝑟 = 1

4).

4.5 Properties
4.5.1 Decidability. For any EGD(P,𝜶) occurring in the seman-
tics, each entry of P and 𝜶 is a rational function of entries of
initial blocks, decay rates, and contraction factors. (In fact, it
is linear in initial block entries.) Hence the ⪯EGD constraints reduce to polynomial inequality
constraints if the sizes of the EGDs are known. If we want to find an upper bound, these constraints
will contain unknowns, which we have to solve for. Since the existential first-order theory of the
reals is decidable, solving these constraints is indeed possible.

Theorem 4.12. Given a program 𝑃 and an EGD(P,𝜶), it is decidable whether there is an EGD
EGD(Q, 𝜷) such that EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷), assuming the sizes of the intermediate EGDs for
joins and contraction invariants in the semantics are fixed.

This is yet another reason to prefer EGDs over more general classes of distributions: while it
may be possible to check ⪯ for slightly more complicated classes of distributions with concrete
values, solving such a system of ⪯-inequalities with unknown values will be much harder. Despite
the decidability results, solving our constraints is still not easy because the existential theory of the
reals is NP-hard and algorithms only work for small instances in practice.
One might hope that the constraints arising from the geometric bound semantics have nice

properties. For example, one might expect the solution set (Q, 𝜷) to be convex and 𝜷 to be right-
closed, i.e. that for any solution EGD(Q, 𝜷) and any 𝜸 ≥ 𝜷 , there is a solution EGD

(
Q′,𝜸

)
, because

this weakens the bound. However, we found simple counterexamples to both properties (see Zaiser
et al. [2024]). We address the problem of practical constraint solving in Section 5.1.

4.5.2 Soundness. We prove that the geometric bound semantics is correct with respect to the
standard semantics.

Theorem 4.13 (Soundness). The rules for the EGD event semantics (Fig. 4) agree with the standard
event semantics: EGD(P,𝜶) |geo

𝐸
= EGD(P,𝜶) |𝐸 . The rules for the EGD statement semantics J−Kgeo

(Fig. 5) are sound: if EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷) then J𝑃K(EGD(P,𝜶)) ⪯ EGD(Q, 𝜷). Furthermore,
if EGD(P,𝜶) is a probability distribution, then we can bound the normalized distribution:

J𝑃Klo (EGD(P,𝜶)) |N𝑛
EGD(Q, 𝜷) (N𝑛) ⪯ normalize(J𝑃K (EGD(P,𝜶))) ⪯ EGD(Q, 𝜷)

J𝑃Klo (EGD(P,𝜶)) (N𝑛)

4.5.3 Loop-free Fragment. It is instructive to look at when J−Kgeo is precise, i.e. when the right-
hand side of the relation is unique and equals the J−K semantics. It turns out that this is the case
for programs without loops, which is easy to see from the soundness proof.

Theorem 4.14 (Precision for loop-free fragment). Let 𝑃 be a loop-free program. Assume that the
strict Join∗ relation is used in the J−Kgeo semantics of if − {−} else {−}. Then for all EGD(P,𝜶), there
is a unique EGD(Q, 𝜷) such that EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷) and J𝑃K(EGD(P,𝜶)) = EGD(Q, 𝜷).
Furthermore, each 𝛽𝑖 ∈ {0, 𝛼𝑖 }.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:19

4.5.4 Sufficient Conditions for the Existence of Bounds. When does the constraint problem arising
from our semantics actually have a solution? This is hard to characterize in general because the
feasible region can be complex, as discussed above. Furthermore, a useful purely syntactic criterion
is unlikely to exist because even for the simple asymmetric random walk while𝑋1 > 0 {if flip(𝜌)
{𝑋1 += 1} else {𝑋1 ¤−= 1}}, a bound can be found if and only if 𝜌 < 1

2 .
Nevertheless, we have succeeded in identifying a sufficient criterion for the existence of an EGD

loop bound: roughly speaking, if the difference between new and old values of the variables is the
same in each loop iteration, and if there is a linear ranking supermartingale [Chatterjee et al. 2016],
then an EGD bound exists. The precise conditions are stated in the following theorem.

Theorem 4.15. Suppose 𝐿 = while𝐸 {𝐵} satisfies the following properties:
(1) 𝐵 only contains increment and decrement statements (𝑋𝑘 += 1, 𝑋𝑘 ¤−= 1), probabilistic branching

(if flip(. . .) {. . .} else {. . .}), and fail,
(2) 𝐸 occurring guarantees that 𝑋1 ≥ 𝑎1 ∧ · · · ∧ 𝑋𝑛 ≥ 𝑎𝑛 where 𝑎𝑖 ∈ N is the maximum number of

decrements of 𝑋𝑖 in any program path through 𝐵, and
(3) there is a conical (linear with nonnegative coefficients) combination

∑𝑛
𝑖=1 𝜆𝑖𝑋𝑖 whose expected

value decreases after every loop iteration for any initial assignment 𝒙 that can enter the loop:
E𝑿∼J𝐵K(Dirac(𝒙) |𝐸)

[∑𝑛
𝑖=1 𝜆𝑖𝑋𝑖

]
<

∑𝑛
𝑖=1 𝜆𝑖𝑥𝑖 for all 𝒙 ∈ N𝑛 with 𝑥𝑖 ≥ 𝑎𝑖

Then, for any initial EGD(P,𝜶), there is a solution (Q, 𝜷) to EGD(P,𝜶) J𝐿Kgeo EGD(Q, 𝜷).
Although the assumptions of this theorem may seem restrictive, they are sufficient to prove the

existence of bounds for the random walk (Example 4.11), which is nontrivial to analyze. In that
case, 𝑎1 = 1, 𝑎2 = 0 and the expected value of 𝑋1 decreases by 1 − 2𝑟 > 0 in each loop iteration.

4.5.5 Necessary Conditions for the Existence of Bounds. We already mentioned that the existence
of bounds is not guaranteed in general. An obvious necessary condition is that the true program
distribution actually has tails that decay exponentially fast, i.e. can be bounded by an EGD. It turns
out that the same must hold for the running time of the program as well.

Theorem 4.16 (Necessary conditions on the running time). If EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷) for
an EGD(P,𝜶) then the running time 𝑇 of 𝑃 on EGD(P,𝜶) can be bounded by an EGD as well. In
particular, all its moments E[𝑇𝑘] must be finite.

4.5.6 Loop Unrolling and Convergence. Just like for the residual mass semantics, we would expect
the geometric bound semantics to yield tighter and tighter bounds as we unroll loops further and
further. It turns out that for the 𝑢-fold unrolling 𝑃 (𝑢) of a program 𝑃 , we can find upper bounds
whose distance from the true distribution decreases exponentially in 𝑢.

Theorem 4.17 (Convergence). Let 𝑃 be a program containing potentially nested loops and 𝑃 (𝑢) its
𝑢-fold unrolling. Suppose EGD(P,𝜶) J𝑃Kgeo EGD(Q, 𝜷). Then there exist 𝐴 ∈ R≥0,𝐶 ∈ [0, 1) and
Q(𝑢) such that EGD(P,𝜶) J𝑃 (𝑢)Kgeo EGD

(
Q(𝑢) , 𝜷

)
⪯EGD EGD(Q, 𝜷) and

EGD
(
Q(𝑢) , 𝜷

)
− J𝑃K(EGD(P,𝜶)) ⪯ 𝐴 ·𝐶𝑢 · EGD(Q, 𝜷)

In particular, the distribution bound EGD
(
Q(𝑢) , 𝜷

)
converges in total variation distance to the true

distribution J𝑃K(EGD(P,𝜶)), as 𝑢 → ∞. Similarly, the 𝑘-th moment bound E𝑿∼EGD(Q(𝑢) ,𝜷) [𝑋
𝑘
𝑖]

converges to the true moment E𝑿∼J𝑃K(EGD(P,𝜶)) [𝑋𝑘
𝑖] for any 𝑘 .

Note that this theorem does not prove that the parameters 𝜷 of the geometric tails converge
to the best possible ones. In general, unrolling does not improve the decay rate at all, except for
specific cases where the loop is finite and can be fully unrolled. In fact, the derived tail bounds may
differ arbitrarily from the true tails, as shown in the next example.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:20 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Example 4.18 (Nonoptimal tail bounds). As an example of nonoptimal tail bounds, consider the
following program where 𝜌 ∈ (0, 1):

𝑋1 := 0;𝑋2 := 0;
while flip(𝜌) {𝑋1 += 1;𝑋2 += 1};
while𝑋1 > 0 ∧ 𝑋2 > 0 {𝑋1 ¤−= 1;𝑋2 ¤−= 1}

It is clear that at the end of the program, 𝑋1 = 0 and 𝑋2 = 0 almost surely. Throughout the program,
the same operations are applied to them. However, the geometric bound semantics cannot keep
track of this correlation completely because the structure of EGDs can only express correlations
in the finite initial block and not in the tails. Hence the best tail bounds we get for 𝑋1 and 𝑋2 are
of the form 𝑂 ((𝜌 + 𝛿)𝑛) for any 𝛿 > 0, whereas the true tails are zero. So the tail bounds can be
arbitrarily far from the true tails. Note, however, that the existence of geometric tails is already
useful knowledge: it tells us that the distribution is not heavy-tailed and that all moments are finite.

5 Implementation
We implemented both the residual mass semantics and the geometric bound semantics in a tool
called Diabolo (“Discrete Distribution Analysis via Bounds, supporting Loops and Observations”).
The code is available at github.com/fzaiser/diabolo and on Zenodo [Zaiser 2024a].

Diabolo takes a probabilistic program as input and outputs bounds on probability masses,
moments, and tail asymptotics of the posterior distribution of a specified program variable. The
output and computational effort can be controlled with various options. The most important one is
the loop unrolling limit 𝑢, which is common to both semantics. The geometric bound semantics has
additional options: the dimension 𝑑 of the contraction invariants to be synthesized, an optimization
objective, as well as the solver and optimizer to be used for the polynomial constraints. The
optimization objective is the quantity whose bound should be optimized: the probability mass, the
expected value, or the asymptotic decay rates. Depending on which of these is chosen, the best EGD
bound can vary significantly (see Section 4.4). Diabolo is implemented in Rust [Matsakis and Klock
II 2014] for performance and uses exact rational number computations instead of floating point to
ensure the correctness of the results. The distributions in the residual mass semantics are represented
as arrays of probability masses. We describe a few practical aspects of the implementation below,
most of them pertaining to the geometric bound semantics.

Nondeterminism in the semantics. As pointed out in Section 4.3, there are two places in the
geometric bound semantics where choices have to be made: branching and loops. To generate the
polynomial constraints arising from while loops, we need to choose the size of the contraction
invariants EGD

(
R,𝜸

)
. It is usually best to choose the dimensions of R to be as small as possible

(often 1): this reduces both the number of constraints and constraint variables, which facilitates
solving. Some programs only have larger contraction invariants, but the dimension rarely needs
to be greater than 2. In terms of quality of the bounds, increasing the unrolling limit has a much
greater effect (cf. Theorem 4.17). In the semantics of if statements, the choice is in the size of the
expansion of the EGDs in the Join relation. In Diabolo, we choose the smallest expansion for speed
and memory usage reasons. The size of the EGDs in a loop depends mostly on the size of the
contraction invariant, so an increase there automatically reduces the imprecision in Join.

Approximating the support. In the constraint problem arising from a 𝑐-contraction invariant
EGD

(
R,𝜸

)
, the constraint variables corresponding to the entries of R are “easy” because they only

occur linearly, whereas the constraints typically contain higher-degree polynomials in 𝜸 . For this
reason, it is desirable to determine the decay rates 𝜸 in advance, if possible. If the program variable

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

https://github.com/fzaiser/diabolo

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:21

𝑋𝑖 has finite support {𝑎𝑖 , 𝑎𝑖 + 1, . . . , 𝑏𝑖 } ⊂ N, we can set the decay rate 𝛾𝑖 to zero (since the tails of
𝑋𝑖 ’s distribution are zero). But to be able to represent its distribution with 𝛾𝑖 = 0, we have to choose
at least |R|𝑖 = 𝑏𝑖 + 1. (In this case, the user-provided dimension 𝑑 for the contraction invariant is
overridden.) Furthermore, we can infer from the support that R𝑖:𝑗 = 0 for 𝑗 < 𝑎𝑖 . To reap these
benefits, we need to analyze the support of the random variables occurring in the program. This is
a standard application of abstract interpretation on the interval domain. Overapproximating the
support also has the benefit that we automatically know that probabilities outside of it are zero,
which can improve the results of both semantics (see Zaiser et al. [2024]).

5.1 Constraint Solving
How can we solve the polynomial constraints arising from the geometric bound semantics? As
this is a decidable problem known as the existential theory of the reals, we first tried to use SMT
solvers, such as Z3 [de Moura and Bjørner 2008] and CVC5 [Barbosa et al. 2022], and the dedicated
tool QEPCAD [Brown 2003]. Out of these, Z3 performed the best, but it was only able to solve the
simplest problems and scaled badly.

Numerical solvers. Given that even simple programs lead to dozens and sometimes hundreds of
constraints, we resorted to numerical solutions instead. The best solver for our purposes turned out
to be IPOPT: a library for large-scale nonlinear optimization [Wächter and Biegler 2006]. One issue
with IPOPT are rounding errors, so it sometimes returns solutions that are not exactly feasible. To
address this, we tighten the constraints by a small margin before handing them over to IPOPT and
check the feasibility of the returned solution with exact rational arithmetic. Another disadvantage
of IPOPT is that it cannot prove infeasibility – only exact solvers like Z3 and QEPCAD can do so.
However, its impressive scalability makes up for these shortcomings.

We also developed a custom solver that transforms the constraint problem into an unconstrained
optimization problem (details in Zaiser et al. [2024]) and applies the ADAM optimizer [Kingma
and Ba 2015], a popular gradient descent method. We also explored other off-the-shelf solvers for
polynomial constraints: IBEX, a rigorous solver based on interval arithmetic, and constrained opti-
mization methods in scipy, the Python scientific computing library; but neither of them performed
well. Diabolo includes the solvers IPOPT (the default), our ADAM-based solver, and Z3.

Nested loops. Nested loops lead to cyclic ≤-constraints on the decay rates, e.g. 𝛼 ≤ 𝛽 ∧ 𝛽 ≤ 𝛼 .
Numerical solvers struggle with such indirect equality constraints, so we added a preprocessing
step to detect them and replace the equal variables with a single representative.

Reducing the cost of unrolling. Unrolling loops is essential to obtain tight bounds on posterior
masses and moments (it does not affect tail bounds). On the other hand, unrolling increases the
complexity of the constraint problem considerably, both in terms of number of variables and
constraints. A key observation from Theorem 4.17 can mitigate this problem: the variables that
occur nonlinearly, i.e. decay rates and contraction factors, need not be changed as the unrolling
count increases. As a consequence, we first solve the constraint problem without unrolling and
need only solve a linear constraint problem for higher unrolling limits. Since linear programming
solvers are much faster and more robust than nonlinear solvers, this approach significantly reduces
numerical issues and computation time. In fact, without this technique, several benchmarks in
Section 6.2 would not be solvable at all.

5.2 Optimization
Since the geometric bound semantics is nondeterministic, there are many EGD bounds for a given
program. Which one is the best depends on what quantity we want to optimize. In Diabolo, the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:22 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

user can specify one of the following optimization objectives to minimize: the bound on the total
probability mass, on the expected value, or on the tail asymptotics (i.e. the decay rate).
IPOPT and the ADAM-based solver can also be used for optimization. Moreover, we apply the

linear programming solver CBC by the COIN-OR project to optimize the linear variables (keeping
the nonlinear ones fixed), which is very fast. By default, Diabolo runs IPOPT, the ADAM-based
optimizer, and the linear solver in this order, each improving the solution of the previous one. The
ADAM-based optimizer can be slow for larger programs, in which case the user may decide to skip
it. However, it often finds better tail bounds than IPOPT, which is why it is included by default.

6 Empirical Evaluation
In this section, we evaluate our two methods in practice to answer the following four questions:
(1) How often is the geometric bound semantics applicable in practice? (Section 6.1)
(2) How tight are the bounds in practice? (Section 6.2)
(3) How do our methods perform compared to previous work? (Section 6.3)
(4) How do our two semantics perform compared to each other? (Section 6.4)

All benchmarks and code to reproduce the results are available [Zaiser 2024a].

6.1 Applicability of the Geometric Bound Semantics
In this section, we empirically investigate the existence of geometric bounds, i.e. how often the
constraints arising from the geometric bound semantics can be solved. If some bound can be
found at all, Theorem 4.17 ensures that it can be made arbitrarily tight by increasing the unrolling
limit. (This aspect of the quality of bounds is studied in Sections 6.2 and 6.4.) While Theorem 4.15
provides sufficient conditions for existence, we want to test the applicability of the geometric bound
semantics in practice in a systematic way.

Benchmark selection. For this purpose, we collected benchmarks from the Github repositories of
several probabilistic programming languages: Polar [Moosbrugger et al. 2022], Prodigy [Klinkenberg
et al. 2024], and PSI [Gehr et al. 2016]. Note that a benchmark being available in a tool’s repository
does not mean that the tool can solve it. We searched all benchmarks from these repositories for
the keyword while, in order to find benchmarks with loops. We manually filtered out benchmarks
whose loops are actually bounded or that make essential use of continuous distributions (15),
negative integers (4), comparisons of two variables (7), or multiplication (1), because our language
cannot express these. Some benchmarks using these features could still be translated in other ways
to an equivalent program in our language.
We ended up with 43 benchmarks: 9 from Polar, 11 from Prodigy, 9 from PSI, and we added 14

of our own. They include standard probabilistic loop examples (in particular, all examples from
this paper, and variations thereof), nested loops, and real-world algorithms, such as probabilistic
self-stabilization protocols [Beauquier et al. 1999; Herman 1990; Israeli and Jalfon 1990].

Symbolic inputs. Polar and Prodigy can handle symbolic inputs and symbolic parameters to some
extent, which our techniques cannot. One benchmark (polar/fair_biased_coin) used symbolic
parameters, which we replaced with concrete values. Several benchmarks from Polar and Prodigy
have symbolic inputs, i.e. they are parametric in the initial values in N of the variables. Since our
method cannot reason parametrically about the input, we instead put aGeometric(1/2) distribution
on such inputs, to cover all possible values. Of course, this yields less information than a method
computing a symbolic result that is valid for all input values. But if an EGD bound can be found for
this input distribution, then an EGD bound can be found for each possible input value because any
Dirac distribution on the input can be bounded by a scaled version of the geometric distribution:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:23

Dirac(𝑚) ⪯ 2𝑚 · Geometric(1/2). Thus, for the question of the existence of bounds, we consider
this a valid approach. Note that reasoning about such a geometric distribution on the input is
nontrivial (and much harder than reasoning about fixed input values). For instance, Polar cannot
always handle it even for benchmarks where it supports the version with symbolic input values.

Methodology. We ran our tool Diabolo for the geometric bound semantics on all benchmarks
with a timeout of 5 minutes. The configuration options were mostly left at the defaults for most
benchmarks (invariant size: 1, solver: IPOPT). However, we disabled unrolling for all benchmarks
since it only affects the quality of bounds, not their existence. For 4 benchmarks, the invariant size
had to be increased to 2 or 3 to find bounds. For each benchmark, we recorded the time it took to
compute the bounds, or any errors.

Results. Diabolo was able to solve 37 out of the 43 benchmarks (86%); 5 failed because no EGD
bound exists (at least 3 of them have infinite expected running time); and 1 timed out due to the
complexity of the constraint problem. Among the solved benchmarks, the solution time was at most
3 seconds and typically much less. This demonstrates that our geometric bound semantics is also
of practical relevance, in addition to its nice theoretical properties. Detailed results are available
in Zaiser et al. [2024], along with statistics about the input program and the constraint problem
arising from the geometric bound semantics.

6.2 Quality of the Geometric Bounds
Methodology. Beyond the mere existence, we are also interested in the quality of the bounds. To

this end, we ran Diabolo again on each benchmark where a bound could be found, once optimizing
the bound on the expected value, once optimizing the tail bound. The configuration options were
left at the default settings with an unrolling limit of 30 for most benchmarks. For expectation
bounds, we modified the settings for 23 benchmarks, to adjust the unrolling limit (reported in
Table 2), invariant size to 2, 3, or 4 (if smaller values failed or yielded bad bounds), and to skip the
ADAM-based optimizer (due to it being slow for some benchmarks). For tail bounds, we set the
unrolling limit to 1 and modified the default settings for 15 benchmarks to adjust the invariant size
to 2, 3, or 4 and to skip the ADAM-based optimizer (due to it being slow for some benchmarks).

Results. The results are shown in Table 2. We mark with “†” all examples that, to our knowledge,
could not be solved automatically before, in the sense of bounding the distribution’s moments
and tails without user intervention. Note that no other existing tool is able to obtain exponential
tail bounds like ours on any benchmark (unless the tails are zero). One can see that all bounds
are nontrivial and the upper and lower bounds on the expected value are usually close together.
However, it seems to be harder to find good bounds for benchmarkswhere the tails of the distribution
decay slowly, such as the asymmetric random walks (ours/*-asym-rw). Most of the tail bounds are
also very close to the theoretical optimumwhere the exact tail bound could be manually determined.
This demonstrates that our geometric bound semantics generally yields useful bounds.

6.3 Comparison with Previous Work
Comparison with GuBPI. Our residual mass semantics shares many characteristics with GuBPI

(see Table 1). However, GuBPI is designed for a more general setting with continuous sampling and
soft conditioning. As a consequence, when applied to discrete probabilistic programs with only hard
conditioning, there is a lot of overhead. To demonstrate this, we ran both tools on Examples 1.1,
4.10 and 4.11, configured to produce the same bounds. The results (Table 3) show that Diabolo’s
residual mass semantics is several orders of magnitude faster than GuBPI.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:24 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Table 2. Diabolo’s bounds on the expected value and the tail asymptotics for the benchmarks from Section 6.1
where bounds exist. Results are rounded to 4 significant digits. (#U: unrolling limit; EV: expected value; “?”:
ground truth could not be determined; “†”: could not be solved by an automatic tool before, in the sense of
bounding the distribution’s moments and tails without user intervention; timeout: 5 minutes exceeded.)

Benchmark #U True EV EV bound Time True tail Tail bound Time

polar/c4B_t303 † 30 0.1787... [0.1787, 0.1788] 0.24 s ? 𝑂 (0.5001𝑛) 0.12 s
polar/coupon_collector2 30 2 [1.999, 2.001] 0.16 s Θ(0.5𝑛) 𝑂 (0.5071𝑛) 0.11 s
polar/fair_biased_coin 30 0.5 [0.4999, 0.5001] 0.03 s 0 0 0.02 s
polar/las_vegas_search 200 20 [19.98, 26.79] 2.29 s Θ(0.9523...𝑛) 𝑂 (0.9524𝑛) 0.72 s
polar/linear01 † 30 0.375 [0.3749, 0.3751] 0.03 s 0 0 0.03 s
polar/simple_loop 30 1.3 [1.299, 1.301] 0.02 s 0 0 0.02 s
prodigy/bit_flip_conditioning 30 1.254... [1.254, 1.255] 0.28 s ? 𝑂 (0.6254𝑛) 0.19 s
prodigy/brp_obs † 30 4.989...e-10 [4.989e-10, 1.489e-09] 0.61 s 0 0 3.83 s
prodigy/condand † 30 0.75 [0.7499, 0.7501] 0.15 s ? 𝑂 (0.5001𝑛) 0.07 s
prodigy/dep_bern † 30 0.5 [0.4999, 0.5124] 1.00 s Θ(0.3333...𝑛) 𝑂 (0.34𝑛) 0.17 s
prodigy/endless_conditioning 30 undef undef 0.15 s 0 0 0.13 s
prodigy/geometric 30 2 [1.999, 2.007] 1.09 s Θ(0.5𝑛) 𝑂 (0.5066𝑛) 0.60 s
prodigy/ky_die 30 3.5 [3.499, 3.501] 0.18 s 0 0 0.08 s
prodigy/n_geometric † 30 1 [0.998, 1.068] 0.08 s Θ(0.6666...𝑛) 𝑂 (0.673𝑛) 0.07 s
prodigy/trivial_iid † 30 3.5 [3.499, 3.503] 2.60 s Θ(0.8318...𝑛) 𝑂 (0.836𝑛) 0.16 s
psi/beauquier-etal3 30 ? ✗ (timeout) t/o ? 𝑂 (0.7952𝑛) 17.64 s
psi/cav-example7 80 10.41... [10.41, 10.51] 1.71 s ? 𝑂 (0.8927𝑛) 0.12 s
psi/dieCond (Ex. 1.1) † 40 1.5 [1.499, 1.501] 0.15 s Θ(0.3333...𝑛) 𝑂 (0.3395𝑛) 0.13 s
psi/ex3 30 0.6666... [0.6666, 0.6667] 0.04 s 0 0 0.06 s
psi/ex4 30 0.6666... [0.6666, 0.6667] 0.23 s 0 0 0.27 s
psi/fourcards 30 0.2642... [0.264, 0.2648] 0.46 s 0 0 0.34 s
psi/herman3 30 1.333... [1.333, 1.334] 62.08 s ? 𝑂 (0.5002𝑛) 0.48 s
psi/israeli-jalfon3 30 0.6666... [0.6666, 0.6668] 1.71 s ? 𝑂 (0.2501𝑛) 0.15 s
psi/israeli-jalfon5 30 ? ✗ (timeout) t/o ? 𝑂 (0.6583𝑛) 7.13 s
ours/1d-asym-rw (Ex. 4.11) † 70 2 [1.999, 2.542] 1.47 s Θ(0.8660...𝑛

𝑛1.5
) 𝑂 (0.8682𝑛) 0.12 s

ours/2d-asym-rw † 70 ? [7.394, 100.4] 79.60 s ? 𝑂 (0.9385𝑛) 4.88 s
ours/3d-asym-rw † 30 ? [9.443, 6.85e+05] 289.94 s ? 𝑂 (0.9812𝑛) 6.35 s
ours/asym-rw-conditioning † 70 2.444... [2.316, 2.588] 4.85 s 0 0 0.05 s
ours/coupon-collector5 80 11.41... [11.41, 11.56] 47.93 s Θ(0.8𝑛) 𝑂 (0.8002𝑛) 15.56 s
ours/double-geo † 30 2 [1.999, 2.01] 0.32 s Θ(0.7071...𝑛) 𝑂 (0.711𝑛) 0.12 s
ours/geometric (Ex. 4.10) † 30 1 [0.9999, 1.006] 0.12 s Θ(0.5𝑛) 𝑂 (0.5037𝑛) 0.10 s
ours/grid † 30 2.75 [2.749, 2.766] 2.39 s ? 𝑂 (0.5285𝑛) 0.30 s
ours/imprecise_tails (Ex. 4.18) † 30 0 [0, 0.007054] 2.36 s 0 𝑂 (0.5001𝑛) 0.18 s
ours/israeli-jalfon4 30 ? [1.457, 1.458] 121.04 s ? 𝑂 (0.5011𝑛) 0.44 s
ours/nested † 5 ? [0.9152, 10.57] 12.59 s ? 𝑂 (0.4998𝑛) 0.40 s
ours/sub-geom † 30 0.6666... [0.6666, 0.6667] 0.06 s ? 𝑂 (0.5001𝑛) 0.10 s
ours/sum-geos 80 8 [7.998, 8.001] 2.91 s Θ(0.875𝑛) 𝑂 (0.8751𝑛) 0.30 s

Table 3. Comparison of the running time of GuBPI [Beutner et al. 2022] and our residual mass semantics (as
implemented in Diabolo) to produce the same bounds

Benchmark GuBPI Residual mass semantics Speedup factor

Simple counter (Example 4.10) 0.7 s 0.006 s 1.2 · 102
Asymmetric random walk (Example 4.11) 90 s 0.002 s 4.5 · 104
Mossel’s die paradox (Example 1.1) 156 s 0.0008 s 2 · 105

Wang et al. [2024] subsequently improved on GuBPI’s results, but we were unable to compare
with their system because they use proprietary software. However, they report performance
improvements of at most a factor of 15 over GuBPI, which is insufficient to bridge the factor of
over 100 for Example 4.10 between GuBPI and our residual mass semantics, let alone the factor of
over 105 for Example 1.1. This demonstrates that the residual mass semantics is more effective than
existing tools for discrete probabilistic programs.

Comparison with Polar. We compare the geometric bound semantics (as implemented in Diabolo)
with Polar [Moosbrugger et al. 2022], the only other tool that can be used to bound moments. In fact,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:25

Table 4. Comparison of Diabolo with Polar [Moosbrugger et al. 2022] on the benchmarks from Table 2 where
Polar can compute the expected value (EV). Diabolo’s results are the same as in Table 2, but listed again for
an easier comparison. (t/o: timeout of 5 minutes exceeded.)

Benchmark Polar Diabolo (ours)
Exact EV Time EV bound Time

polar/coupon_collector2 2 0.26 s [1.999, 2.001] 0.16 s
polar/fair_biased_coin 1/2 0.41 s [0.4999, 0.5001] 0.03 s
polar/las_vegas_search ✗ t/o [19.98, 26.79] 2.29 s
polar/simple_loop 13/10 0.20 s [1.299, 1.301] 0.02 s
prodigy/geometric 2 0.46 s [1.999, 2.007] 1.09 s
prodigy/ky_die ✗ t/o [3.499, 3.501] 0.18 s
psi/beauquier-etal3 ✗ t/o ✗ t/o
psi/cav-example7 ✗ t/o [10.41, 10.51] 1.71 s
psi/ex3 2/3 0.58 s [0.6666, 0.6667] 0.04 s
psi/ex4 2/3 0.21 s [0.6666, 0.6667] 0.23 s
psi/fourcards ✗ t/o [0.264, 0.2648] 0.46 s
psi/herman3 4/3 19.53 s [1.333, 1.334] 62.08 s
psi/israeli-jalfon3 2/3 19.40 s [0.6666, 0.6668] 1.71 s
psi/israeli-jalfon5 ✗ t/o ✗ t/o
ours/coupon-collector5 137/12 74.86 s [11.41, 11.56] 47.93 s
ours/geometric 1 0.59 s [0.9999, 1.006] 0.12 s
ours/israeli-jalfon4 ✗ t/o [1.457, 1.458] 121.04 s
ours/sum-geos 8 0.19 s [7.998, 8.001] 2.91 s

Polar can compute moments exactly, but does not bound the tail asymptotics.5 We only included
benchmarks from Table 2 where Polar can compute the expected value (EV), at least in theory. (We
had to extend Polar slightly to support a geometric distribution as the initial distribution.) Polar
was run with a timeout of 5 minutes, like Diabolo. The results (Table 4) demonstrate that Diabolo
is often faster, and sometimes much faster, than Polar and applicable to more benchmarks.

Comparison of tail bounds. There are several existing program analyses that can bound the tail dis-
tribution of the running time of a probabilistic program (see Section 7), but only one [Chatterjee et al.
2016] achieves exponential bounds 𝑂 (𝑐𝑛) for 𝑐 < 1 like our bounds. This is particularly interesting
as their assumptions (bounded differences and the existence of a linear ranking supermartingale)
are remarkably similar to the conditions of our Theorem 4.15. Since the code for the experiments by
Chatterjee et al. [2016] is not available, we do a manual comparison on Examples 4.10 and 4.11. Our
geometric bound semantics yields the bounds 𝑂 ((12 + 𝜀)𝑛) and 𝑂 ((2

√︁
𝑟 (1 − 𝑟) + 𝜀)𝑛), respectively,

whereas their method yields 𝑂 ((exp(−1/2))𝑛) and 𝑂 ((
√︁
exp(−(1 − 2𝑟)2))𝑛), where 𝑟 is the bias of

the random walk. It is not hard to see that our bounds are tighter (details in Zaiser et al. [2024]).

6.4 Comparison Between Our Two Semantics
We compare the quality of the bounds from the two semantics on 5 examples: the simple counter
(Example 4.10), the asymmetric random walk (Example 4.11), the introductory example (Exam-
ple 1.1), the coupon collector problem with 5 coupons (ours/coupon-collector5), and Herman’s
self-stabilization protocol with 3 processes (adapted from psi/herman3). They were run with a loop
unrolling limit of 50, 70, 40, 80, and 30 respectively, except for the geometric tail bounds where the
limit was set to 1. We report bounds on the first two (raw) moments and the tails (Table 5). Note
that the residual mass semantics (not just the lower bound semantics) is needed for lower bounds
5One could derive the tail asymptotic bound𝑂 (𝑛−𝑘) from the 𝑘-th moment via Markov’s inequality. But this asymptotic
bound is very weak as it applies to any distribution with a finite 𝑘-th moment.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:26 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Table 5. Comparison of the quality of moment and tail bounds for various examples between the residual
mass and geometric bound semantics

Example Method Expected value 2nd moment Tail Time

Simple counter
(Example 4.10)

exact 1 3 Θ(0.5𝑛)
res. mass sem. ≥ 1 − 5 · 10−14 ≥ 3 − 3 · 10−12 n/a 0.003 s
geom. bound sem. ≤ 1.000037 ≤ 3.00017 𝑂 (0.5037𝑛) 0.092 s

Random walk
(Example 4.11)

exact 2 10 Θ(𝑛−3/20.8660...𝑛)
res. mass sem. ≥ 1.99997 ≥ 9.998 n/a 0.067 s
geom. bound sem. ≤ 2.55 ≤ 21.8 𝑂 (0.8682𝑛) 1.47 s

Introductory “Die
paradox”
(Example 1.1)

exact 1.5 3 Θ(0.3333...𝑛)
res. mass sem. ≥ 1.5 − 2 · 10−16 ≥ 3 − 4 · 10−16 n/a 0.005 s
geom. bound sem. ≤ 1.5 + 8 · 10−7 ≤ 3 + 3 · 10−6 𝑂 (0.3395𝑛) 0.097 s

Coupon collector
(5 coupons)

exact 11.41666... 155.513888... Θ(0.8𝑛)
res. mass sem. ≥ 11.41665 ≥ 155.5131 n/a 0.88 s
geom. bound sem. ≤ 11.56 ≤ 158.5 𝑂 (0.8002𝑛) 22.6 s

Herman’s self-stabilization
(3 processes)

exact 1.333... 4.222... ?
res. mass sem. ≥ 1.3333332 ≥ 4.222220 n/a 0.509 s
geom. bound sem. ≤ 1.3339 ≤ 4.226 𝑂 (0.5002𝑛) 34.8 s

0 25 50 75 100 125 150 175 200
Result value

010−40

10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

Pr
ob

ab
ilit

y
M

as
s

Resid. mass bound (0.0033 s)
Geom. bound, mass-opt. (0.074 s)
Geom. bound, tail-opt. (0.092 s)
Exact probability

(a) Geom. counter (Example 4.10)

0 50 100 150 200 250 300
Result value

0
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Pr
ob

ab
ilit

y
M

as
s

Resid. mass bound (0.067 s)
Geom. bound, mass-opt. (0.34 s)
Geom. bound, tail-opt. (0.12 s)
Exact probability

(b) Asym. rand. walk (Example 4.11)

0 20 40 60 80 100
Result value

010−48

10−40

10−32

10−24

10−16

10−8

100100
Pr

ob
ab

ilit
y

M
as

s

Resid. mass bound (0.005 s)
Geom. bound, mass-opt. (0.13 s)
Geom. bound, tail-opt. (0.076 s)
Exact probability

(c) Die paradox (Example 1.1)

0 50 100 150 200 250 300
Result value

0
10−12

10−10

10−8

10−6

10−4

10−2

100

Pr
ob

ab
ilit

y
M

as
s

Resid. mass bound (0.88 s)
Geom. bound, mass-opt. (2.9 s)
Geom. bound, tail-opt. (14 s)

(d) Coupon collector problem with 5 coupons

0 25 50 75 100 125 150 175 200
Result value

0
10−24

10−20

10−16

10−12

10−8

10−4

100100

Pr
ob

ab
ilit

y
M

as
s

Resid. mass bound (0.51 s)
Geom. bound, mass-opt. (32 s)
Geom. bound, tail-opt. (13 s)

(e) Herman’s self-stabilization with 3 processes

Fig. 7. Comparison of the residual mass and geometric bound semantics. Note that the probability masses
(y-axis) are on a logarithmic scale, except for the lowest part, which is linear so as to include 0.

on moments because they require upper bounds on the normalizing constant. The optimization
objective for the EGD bounds was the expected value for the moment bounds and the decay rate for
the tail bound. The residual mass semantics is faster and finds good lower bounds on the moments,
but cannot find upper bounds or tail bounds. The geometric bound semantics can find upper bounds
on both, but takes much more time than the residual mass semantics.
The bounds on the probability masses can be found in Fig. 7. We report EGD bounds for two

optimization objectives: the total probability mass (“mass-optimized”) and the decay rate (“tail-
optimized”). The residual mass semantics is faster and yields tighter bounds for the probability
masses on small values, but the bound is flat, i.e. the difference between upper and lower bounds is

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:27

constant. In contrast, the geometric bound semantics finds upper bounds that keep decreasing like
a geometric distribution even for large numbers beyond the unrolling limit. On the other hand, its
upper bound is somewhat worse for small values than the residual mass semantics. This is because
the geometric bounds arise from the contraction invariant, which requires a uniform decrease
of the distribution. So the geometric bounds need to lose precision either for large values (when
minimizing the total mass bound), or small values (when minimizing the tail bounds). In fact, the
tail-optimized bound is much worse for small values, but eventually becomes almost parallel to the
exact solution, since their asymptotics are almost equal up to a constant factor.

7 Related Work
A summary of the most relevant work is given in Table 1: guaranteed bounds [Beutner et al. 2022;
Wang et al. 2024], exact Bayesian inference with loops [Klinkenberg et al. 2024], and exact loop
analysis with moments [Moosbrugger et al. 2022]. This section presents a more detailed account.

Guaranteed bounds. The two most directly related pieces of work are Beutner et al. [2022] and
Wang et al. [2024]. Beutner et al. [2022] compute guaranteed bounds on posterior probabilities:
they partition the trace space (the space of all sampled values during program execution) into
boxes or, more generally, polytopes, in such a way that they can get upper and lower bounds on
the likelihood in each partition. They also present an interval type system to overapproximate
recursion. For discrete probabilistic programs, the effective bounds are comparable to our residual
mass semantics (Section 6.3), but their computation is slower and they are not proven to converge.

Wang et al. [2024] introduce a new approach to bounding fixed points and can even find nontrivial
bounds for “score-recursive” programs, i.e. programs with loops where the likelihood can increase
in each iteration, and may be unbounded.

Both methods focus on continuous distributions and obtain bounds on the posterior probability
of the result 𝑋 of a program being in a certain interval, i.e. bounds of the form P[𝑋 ∈ [𝑎, 𝑏]] ∈
[𝑝, 𝑞] ⊆ [0, 1]. If 𝑋 has infinite support, this is not enough to bound the moments or tail probability
asymptotics. Our geometric bound semantics bounds the whole distribution and therefore does not
suffer from these restrictions. On the other hand, our programming language is more restricted
and we do not support continuous distributions.

Verified samplers. Another approach to ensuring correctness of approximate inference is to verify
the sampler itself. The Zar system compiles discrete probabilistic programs with loops to provably
correct samplers that can be used to form simple Monte Carlo estimates of conditional probability
masses and moments and is fully verified in the Coq proof assistant [Bagnall et al. 2023].

Exact Bayesian inference. Exact inference is intractable in general because it requires analytical
solutions to infinite sums or integrals [Gehr et al. 2016]. Thus exact inference systems either have
to restrict programs to a tractable subclass or may fail on some inputs. In the former category are
Dice [Holtzen et al. 2020], which only supports finite discrete distributions, and SPPL [Saad et al.
2021], which supports continuous distributions, but imposes restrictions on their use, and Genfer
[Zaiser et al. 2023], which allows some infinite-support distributions but restricts operations on
variables. In the latter category are the systems PSI [Gehr et al. 2016] and Hakaru [Narayanan et al.
2016], which rely on computer algebra to find a closed-form solution for the posterior.

We are aware of only one piece of work that tackles exact inference for loops [Klinkenberg et al.
2024]. They build on the idea to use generating functions as an exact representation of distributions
with infinite support [Klinkenberg et al. 2020]. Zaiser et al. [2023] combine this idea with automatic
differentiation to perform Bayesian inference on loop-free probabilistic programs and can even
support continuous sampling (but only discrete observations). Back in the fully discrete setting,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:28 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Klinkenberg et al. [2024] can perform exact Bayesian inference on a single probabilistic loop without
nesting, but only if a loop invariant template is provided, which specifies the shape of the loop
invariant, but may contain holes that have to be filled with real numbers. They can synthesize
these numbers and verify the resulting invariant, from which it is easy to obtain the exact posterior
distribution, parameterized in the program inputs. However, the hard problem of finding the right
shape of the loop invariant falls on the user. In fact, even if a loop invariant exists, it cannot always
be specified in their language [Klinkenberg et al. 2024, Example 25]. In contrast, our method is fully
automatic, so it does not suffer from these issues. As a trade-off, our method is not exact and only
works on fixed program inputs.

Exact loop analysis with moments. There has been some work on studying probabilistic loop
behavior by synthesizing invariants for the moments of the random variables. Bartocci et al. [2019]
consider Prob-solvable loops, which do not have a stopping condition and whose body consists of
polynomial assignments with random coefficients. They obtain invariants for the moments of the
program variables by solving a system of recurrence equations arising from the fixed structure
of the loop body. Amrollahi et al. [2022] extend this method to a larger class of loops, with fewer
restrictions on variable dependencies. Moosbrugger et al. [2022] support (restricted) if-statements
and state-dependent distribution parameters. They use the moments to bound tail probabilities
and can reconstruct the probabilities masses of the distribution if it has finite support. Kofnov et al.
[2024] allow Prob-solvable loops with exponential and trigonometric updates in the loop body, by
leveraging the characteristic function.
Our approach differs from the above-mentioned pieces of work in several regards. On the

one hand, these approaches yield exact moments and can handle continuous distributions and
more primitive operations (e.g. multiplication). On the other hand, they do not support branching
on variables with infinite support, nested loops, or conditioning. Our method can handle these
constructs, and bounds the whole distribution, not just the moments. As a consequence, we get
bounds on probability masses and exponential bounds on the tails, which are better than the
polynomial bounds that can be derived from the moments in previous works.

Cost analysis &martingales. Martingales are a common technique for cost analysis of probabilistic
programs, i.e. computing bounds on the total cost of a program. The cost can be running time,
resource usage, or a utility/reward. A martingale is a sequence of random variables 𝑋0, 𝑋1, . . . such
that E[𝑋𝑖] < ∞ and E[𝑋𝑖+1 | 𝑋1, . . . , 𝑋𝑖] = 𝑋𝑖 for all 𝑖 ∈ N. A supermartingale only requires E[𝑋𝑖+1 |
𝑋1, . . . , 𝑋𝑖] ≤ 𝑋𝑖 . A ranking supermartingale (RSM) requires E[𝑋𝑖+1 | 𝑋1, . . . , 𝑋𝑖] ≤ 𝑋𝑖 −𝜀 · [𝑋𝑛 > 0]
for some 𝜀 > 0. (There are small variations in the definitions.)
Chakarov and Sankaranarayanan [2013] introduce the concept of a RSM to prove almost sure

termination of probabilistic programs. Chatterjee et al. [2016] extend RSMs to probabilistic programs
with nondeterminism and use them to derive expectation and tail bounds on the running time
𝑇 . Then the program’s expected termination time is E[𝑇] ≤ E(𝑋0)

𝜀
. Assuming the martingale is

difference-bounded (i.e. |𝑋𝑖+1−𝑋𝑖 | < 𝐶 for all 𝑖), they derive exponential tail bounds on the running
time (P[𝑇 = 𝑛] = 𝑂 (𝑐𝑛)) from Azuma’s inequality for supermartingales.
Kura et al. [2019] also deal with termination probabilities, but extend the method to higher

moments E[𝑇𝑘] of the running time. Via Markov’s inequality, they obtain polynomial tail bounds
on the termination time (P[𝑇 = 𝑛] = 𝑂 (𝑛−𝑘)), which are asymptotically weaker than Chatterjee
et al. [2016]’s exponential bounds, but more generally applicable (no need for bounded differences).
Wang et al. [2021] improve on this by bounding central moments, from which they obtain better
(but still polynomial) tail bounds than Kura et al. [2019]. In subsequent work by Ngo et al. [2018],

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:29

Wang et al. [2019], and Chatterjee et al. [2024], the focus shifts to more general costs than running
time and relaxing requirements around bounded updates and nonnegativity of costs.
Martingale-based methods can handle continuous distributions and more primitive program

operations (e.g. multiplication). Their bounds are also typically parameterized in the program
inputs, whereas our bounds only apply to fixed inputs. Conversely, our method yields bounds not
just on one program variable (e.g. the running time), but on the distribution of all variables; we
support conditioning; and our bounds can be made arbitrarily tight (Theorems 3.5 and 4.17).

8 Conclusion
We advance the concept of guaranteed bounds for discrete probabilistic programs. Such bounds
are both more automatable and generally applicable than exact methods, as well as providing
more guarantees than sampling-based methods. Our residual mass semantics finds flat tail bounds,
improving upon the state of the art in terms of simplicity, speed, and provable guarantees. Our
geometric bound semantics adds two novel concepts (contraction invariants and EGDs) to the
toolbox of automated probabilistic program analysis, which currently relies predominantly on
martingales, moment analysis, and generating functions. Since this semantics overapproximates
the whole distribution (as opposed to individual probabilities or moments), it can bound probability
masses, moments, and tails at the same time. Both semantics have desirable theoretical properties,
such as soundness and convergence, and our empirical studies demonstrate their applicability and
effectiveness on a variety of benchmarks.

8.1 Future Work
It should be possible to handle (demonic) nondeterminism, as this corresponds to finding a bound 𝜈
on the maximum of two EGD bounds 𝜇1, 𝜇2, which can be specified using inequalities 𝜇1 ⪯ 𝜈 and
𝜇2 ⪯ 𝜈 . One could also try to generalize the shape of upper bounds from EGDs to a more expressive
subclass of discrete phase-type distributions. Furthermore, it would be interesting to illuminate the
theoretical connections with martingale analysis and the quality of the derivable bounds, which
was investigated empirically in Section 6.3.

Negative numbers. Our language is restricted to variables in N. The residual mass semantics
can easily be extended to Z since it only requires an exact semantics for the loop-free fragment,
which is straightforward for distributions with finite support. We believe that the geometric bound
semantics can also be extended to Z, but this is more involved. Even for the simple case of a single
variable, one EGD is not enough, but we need two: one for the negative part and one for the
nonnegative part. In the case of 𝑛 variables, we need one EGD(P𝒐,𝜶 𝒐) for each orthant 𝒐 ∈ {+,−}𝑛 .
We do not foresee any serious conceptual difficulties extending the geometric bound semantics to
operate on such a family of orthant EGDs, but the notation and proofs become quite cumbersome
because P takes two multi-indices, not just one. In the interest of clarity and conceptual simplicity,
we decided not to pursue this idea further.

Continuous distributions. Variables with values in R that can be sampled from continuous distri-
butions are much harder to support. The residual mass semantics can build on the exact semantics
for the loop-free fragment by Zaiser et al. [2023] to achieve partial support for continuous dis-
tributions and variables in R≥0 [Zaiser 2024b, Chapter 5]. For the geometric bound semantics, it
may be possible to support continuous distributions by extending the exponential distribution to
“eventually exponential distributions” (analogously to EGDs extending geometric distributions)
which would consist of an initial block using, e.g. a polynomial bound on the probability density
function on a compact interval [−𝑎, 𝑎] of R, and exponential distributions on (−∞,−𝑎] and [𝑎,∞).
Whether and how this could work in detail is unclear and requires further investigation.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

38:30 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

Data Availability Statement
The artifact for this paper (consisting of the Diabolo tool and benchmarks) is archived on Zenodo
[Zaiser 2024a]. The latest version is available on Github: https://github.com/fzaiser/diabolo.

Acknowledgments
We would like to thank Maria Craciun, Eva Darulova, Joost-Pieter Katoen, Lutz Klinkenberg, Sam
Staton, Dominik Wagner, Peixin Wang, Ðorđe Žikelić, and the anonymous reviewers for their
helpful comments and discussions.
This research was supported by the Engineering and Physical Sciences Research Council (stu-

dentship 2285273, grant EP/T006579) and the National Research Foundation, Singapore, under its
RSS Scheme (NRF-RSS2022-009).

References
Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel Moosbrugger, and Miroslav Stankovic. 2022.

Solving Invariant Generation for Unsolvable Loops. In SAS 2022: Static Analysis - 29th International Symposium, Auckland,
New Zealand, December 5-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13790). Springer, 19–43. https:
//doi.org/10.1007/978-3-031-22308-2_3

Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. 2023. Formally Verified Samplers from Probabilistic Programs
with Loops and Conditioning. Proc. ACM Program. Lang. 7, PLDI (2023), 1–24. https://doi.org/10.1145/3591220

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In TACAS 2022: Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 13243). Springer, 415–442. https://doi.org/10.1007/978-3-030-99524-9_24

Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. 2020. Foundations of Probabilistic Programming. Cambridge
University Press.

Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. 2019. Automatic Generation of Moment-Based Invariants for Prob-
Solvable Loops. In ATVA 2019: Automated Technology for Verification and Analysis - 17th International Symposium,
Taipei, Taiwan, October 28-31, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11781). Springer, 255–276.
https://doi.org/10.1007/978-3-030-31784-3_15

Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. 1999. Memory Space Requirements for Self-Stabilizing Leader
Election Protocols. In PODC 1999: Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed
Computing, Atlanta, Georgia, USA, May 3-6, 1999. ACM, 199–207. https://doi.org/10.1145/301308.301358

Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal proba-
bilistic programming. In PLDI 2022: 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 13-17, 2022. ACM, 536–551. https://doi.org/10.1145/3519939.3523721

Mogens Bladt and Bo Friis Nielsen. 2017. Matrix-Exponential Distributions in Applied Probability. Springer US. https:
//doi.org/10.1007/978-1-4939-7049-0

Christopher W. Brown. 2003. QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37,
4 (2003), 97–108. https://doi.org/10.1145/968708.968710

Azucena Campillo Navarro. 2018. Order statistics and multivariate discrete phase-type distributions. Ph. D. Dissertation. DTU
Compute.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In CAV 2013:
Computer Aided Verification - 25th International Conference, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016. Algorithmic analysis of qualitative
and quantitative termination problems for affine probabilistic programs. In POPL 2016: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, St. Petersburg, FL, USA, January 20-22, 2016.
ACM, 327–342. https://doi.org/10.1145/2837614.2837639

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Ðorđe Žikelić. 2024. Quantitative Bounds
on Resource Usage of Probabilistic Programs. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024),
362–391. https://doi.org/10.1145/3649824

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

https://github.com/fzaiser/diabolo
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1145/3591220
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1145/301308.301358
https://doi.org/10.1145/3519939.3523721
https://doi.org/10.1007/978-1-4939-7049-0
https://doi.org/10.1007/978-1-4939-7049-0
https://doi.org/10.1145/968708.968710
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/3649824

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops 38:31

Paul Dagum and Michael Luby. 1993. Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard. Artif.
Intell. 60, 1 (1993), 141–153. https://doi.org/10.1016/0004-3702(93)90036-B

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS 2008: Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in
Computer Science, Vol. 4963). Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In CAV
2016: Computer Aided Verification - 28th International Conference, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 9779). Springer, 62–83. https://doi.org/10.1007/978-3-319-41528-4_4

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data
Analysis. Chapman and Hall/CRC. https://doi.org/10.1201/b16018

Ted Herman. 1990. Probabilistic Self-Stabilization. Inf. Process. Lett. 35, 2 (1990), 63–67. https://doi.org/10.1016/0020-
0190(90)90107-9

Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling exact inference for discrete probabilistic programs.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 140:1–140:31. https://doi.org/10.1145/3428208

Amos Israeli and Marc Jalfon. 1990. Token Management Schemes and RandomWalks Yield Self-Stabilizing Mutual Exclusion.
In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing, Quebec City, Quebec, Canada,
August 22-24, 1990. ACM, 119–131. https://doi.org/10.1145/93385.93409

Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Lukas Westhofen. 2016. Bounded
Model Checking for Probabilistic Programs. In ATVA 2016: Automated Technology for Verification and Analysis - 14th
International Symposium, Chiba, Japan, October 17-20, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9938).
68–85. https://doi.org/10.1007/978-3-319-46520-3_5

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2015. On the Hardness of Almost-Sure Termination. In MFCS 2015:
Mathematical Foundations of Computer Science 2015 - 40th International Symposium, Milan, Italy, August 24-28, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9234). Springer, 307–318. https://doi.org/10.1007/978-3-662-
48057-1_24

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR 2015: 3rd International
Conference on Learning Representations, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.
org/abs/1412.6980

Lutz Klinkenberg, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Joshua Moerman, and Tobias Winkler. 2020.
Generating Functions for Probabilistic Programs. In LOPSTR 2020: Logic-Based Program Synthesis and Transformation
- 30th International Symposium, Bologna, Italy, September 7-9, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12561). Springer, 231–248. https://doi.org/10.1007/978-3-030-68446-4_12

Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and Joost-Pieter Katoen. 2024. Exact Bayesian
Inference for Loopy Probabilistic Programs using Generating Functions. Proc. ACM Program. Lang. 8, OOPSLA1, Article
127 (2024), 31 pages. https://doi.org/10.1145/3649844

Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia Bura. 2024. Exact and Approximate
Moment Derivation for Probabilistic Loops With Non-Polynomial Assignments. ACM Trans. Model. Comput. Simul. 34, 3
(2024), 18:1–18:25. https://doi.org/10.1145/3641545

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22, 3 (1981), 328–350. https://doi.org/10.1016/
0022-0000(81)90036-2

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probabilities for Randomized Program Runtimes via Martingales
for Higher Moments. In TACAS 2019: Tools and Algorithms for the Construction and Analysis of Systems - 25th International
Conference, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11428). Springer, 135–153.
https://doi.org/10.1007/978-3-030-17465-1_8

Feynman T. Liang, Liam Hodgkinson, and Michael W. Mahoney. 2023. A Heavy-Tailed Algebra for Probabilistic Program-
ming. In NeurIPS 2023: Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, New Orleans, LA, USA, December 10-16, 2023. http://papers.nips.cc/paper_files/paper/2023/hash/
3d8f7945cd7f4446cb05a390d4c00558-Abstract-Conference.html

Nicholas D. Matsakis and Felix S. Klock II. 2014. The Rust language. In HILT 2014: Proceedings of the 2014 ACM SIGAda
annual conference on High integrity language technology, Portland, Oregon, USA, October 18-21, 2014. ACM, 103–104.
https://doi.org/10.1145/2663171.2663188

Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. 2022. This is the moment for probabilistic loops.
Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1497–1525. https://doi.org/10.1145/3563341

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference
by Program Transformation in Hakaru (System Description). In FLOPS 2016: Functional and Logic Programming - 13th

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1201/b16018
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1145/3428208
https://doi.org/10.1145/93385.93409
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1007/978-3-662-48057-1_24
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-68446-4_12
https://doi.org/10.1145/3649844
https://doi.org/10.1145/3641545
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-030-17465-1_8
http://papers.nips.cc/paper_files/paper/2023/hash/3d8f7945cd7f4446cb05a390d4c00558-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3d8f7945cd7f4446cb05a390d4c00558-Abstract-Conference.html
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3563341

38:32 Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong

International Symposium, Kochi, Japan, March 4-6, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9613). Springer,
62–79. https://doi.org/10.1007/978-3-319-29604-3_5

Marcel F Neuts. 1975. Probability distributions of phase type. Liber Amicorum Prof. Emeritus H. Florin (1975).
Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded expectations: resource analysis for probabilistic

programs. In PLDI 2018: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Philadelphia, PA, USA, June 18-22, 2018. ACM, 496–512. https://doi.org/10.1145/3192366.3192394

Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: probabilistic programming with fast exact
symbolic inference. In PLDI 2021: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021. ACM, 804–819. https://doi.org/10.1145/3453483.3454078

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic Program-
ming. CoRR abs/1809.10756 (2018). arXiv:1809.10756 http://arxiv.org/abs/1809.10756

Andreas Wächter and Lorenz T. Biegler. 2006. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program. 106, 1 (2006), 25–57. https://doi.org/10.1007/S10107-004-0559-Y

DiWang, Jan Hoffmann, and ThomasW. Reps. 2021. Central moment analysis for cost accumulators in probabilistic programs.
In PLDI 2021: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021. ACM, 559–573. https://doi.org/10.1145/3453483.3454062

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019. Cost
analysis of nondeterministic probabilistic programs. In PLDI 2019: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Phoenix, AZ, USA, June 22-26, 2019. ACM, 204–220. https:
//doi.org/10.1145/3314221.3314581

Peixin Wang, Tengshun Yang, Hongfei Fu, Guanyan Li, and C.-H. Luke Ong. 2024. Static Posterior Inference of Bayesian
Probabilistic Programming via Polynomial Solving. Proc. ACM Program. Lang. 8, PLDI (2024), 1361–1386. https:
//doi.org/10.1145/3656432

Fabian Zaiser. 2024a. Artifact for: Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops
(POPL 2025). https://doi.org/10.5281/zenodo.14169507

Fabian Zaiser. 2024b. Towards Formal Verification of Bayesian Inference in Probabilistic Programming via Guaranteed Bounds.
Ph. D. Dissertation. University of Oxford.

Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong. 2023. Exact Bayesian Inference on Discrete Models via Probability
Generating Functions: A Probabilistic Programming Approach. In NeurIPS 2023: Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, New Orleans, LA, USA, December 10-16,
2023. http://papers.nips.cc/paper_files/paper/2023/hash/0747af6f877c0cb555fea595f01b0e83-Abstract-Conference.html

Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong. 2024. Guaranteed Bounds on Posterior Distributions of Discrete
Probabilistic Programs with Loops. https://doi.org/10.48550/arXiv.2411.10393 arXiv:2411.10393

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 38. Publication date: January 2025.

https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3453483.3454078
https://arxiv.org/abs/1809.10756
http://arxiv.org/abs/1809.10756
https://doi.org/10.1007/S10107-004-0559-Y
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3656432
https://doi.org/10.1145/3656432
https://doi.org/10.5281/zenodo.14169507
http://papers.nips.cc/paper_files/paper/2023/hash/0747af6f877c0cb555fea595f01b0e83-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2411.10393
https://arxiv.org/abs/2411.10393

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Guaranteed Bounds
	1.3 Contributions
	1.4 Limitations
	1.5 Notation and Conventions

	2 Background
	2.1 Probability and Measure Theory
	2.2 Probabilistic Programming Language
	2.3 Standard Semantics

	3 Residual Mass Semantics
	3.1 Lower Bounds via Unrolling
	3.2 Upper Bounds via Residual Mass

	4 Geometric Bound Semantics
	4.1 Contraction Invariants
	4.2 Eventually Geometric Distributions (EGDs)
	4.3 Semantics
	4.4 Examples
	4.5 Properties

	5 Implementation
	5.1 Constraint Solving
	5.2 Optimization

	6 Empirical Evaluation
	6.1 Applicability of the Geometric Bound Semantics
	6.2 Quality of the Geometric Bounds
	6.3 Comparison with Previous Work
	6.4 Comparison Between Our Two Semantics

	7 Related Work
	8 Conclusion
	8.1 Future Work

	Acknowledgments
	References

