
The Extended Theory of Trees and
Algebraic (Co)datatypes

Fabian Zaiser Luke Ong

Department of Computer Science

HCVS@ETAPS 2020 (published), 2021 (presented)

1

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

2

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

3

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

4

Trees
I nodes have labels
I children are ordered

f

f

hh

g

h

f(g(h), f(h, h))

f

f

f

f

. . .g

h

h

g

h

h

x = f(h, f(g(h), x))

5

Trees
I nodes have labels
I children are ordered

f

f

hh

g

h

f(g(h), f(h, h))

f

f

f

f

. . .g

h

h

g

h

h

x = f(h, f(g(h), x))

5

Trees
I nodes have labels
I children are ordered

f

f

hh

g

h

f(g(h), f(h, h))

f

f

f

f

. . .g

h

h

g

h

h

x = f(h, f(g(h), x))
5

First-order theory of trees
Classic Equational Theory of Trees:
I Function symbols/labels: F = {f : 2, g : 1, h : 0, . . . } with

arities
I Predicate symbols: P = ∅
I Theory of Finite Trees & Theory of Infinite Trees
I Example formula: ∃x. x = f(h, f(g(h), x))?
I Decision procedures: MAHER 1988 and COMON &

LESCANNE 1989 (independently)

Extended Theory of Trees (DJELLOUL, DAO, FRÜHWIRTH 2008):
I Predicate symbols P = {fin}: fin(t) means t is a finite tree
I subsumes Theory of Finite and Infinite Trees
I Decision procedure with a restriction: F must be infinite

6

First-order theory of trees
Classic Equational Theory of Trees:
I Function symbols/labels: F = {f : 2, g : 1, h : 0, . . . } with

arities
I Predicate symbols: P = ∅
I Theory of Finite Trees & Theory of Infinite Trees
I Example formula: ∃x. x = f(h, f(g(h), x))?
I Decision procedures: MAHER 1988 and COMON &

LESCANNE 1989 (independently)

Extended Theory of Trees (DJELLOUL, DAO, FRÜHWIRTH 2008):
I Predicate symbols P = {fin}: fin(t) means t is a finite tree
I subsumes Theory of Finite and Infinite Trees
I Decision procedure with a restriction: F must be infinite

6

Applications

I matching and unification
I semantics of logic, functional programs
I recursion schemes
I verification of programs
I term rewriting systems
I in this talk: algebraic (co)datatypes

7

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

8

Algebraic (Co)Datatypes

f

f

hh

g

h

x = f(g(h), f(h, h))

f

f

f

f

. . .g

h

h

g

h

h

x = f(h, f(g(h), x))

9

Algebraic (Co)Datatypes

cons

cons

nilzero

succ

zero

x = cons(succ(zero),

cons(zero, nil))

cons

cons

cons

cons

. . .succ

zero

zero

succ

zero

zero

Algebraic Datatypes (inductive, least fixed point):
data nat = zero | succ(pred: nat)
data list = nil | cons(head: nat, tail: list)

Algebraic Codatatype (coinductive, greatest fixed point):
codata colist = nil | cons(head:nat, tail: colist)

9

Algebraic (Co)Datatypes

cons

cons

nilzero

succ

zero

x = cons(succ(zero),

cons(zero, nil))

cons

cons

cons

cons

. . .succ

zero

zero

succ

zero

zero

Algebraic Datatypes (inductive, least fixed point):
data nat = zero | succ(pred: nat)
data list = nil | cons(head: nat, tail: list)

Algebraic Codatatype (coinductive, greatest fixed point):
codata colist = nil | cons(head:nat, tail: colist)

9

Theory of Algebraic (Co)Datatypes
I Sorts: S = {nat , list}︸ ︷︷ ︸

Sdata

∪{colist}︸ ︷︷ ︸
Scodata

I Constructor symbols:
Fctr = {zero : list , succ : nat → nat , nil : list , . . . }
→ interpreted as tree constructors

I Selector symbols:
Fsel = {pred : nat → nat , head : list → list , . . . }
→ interpreted as selector functions: pred(succ(x)) = x

I Function symbols F = Fctr ∪ Fsel ; predicate symbols: P = ∅
I interpretations of datatype terms must be finite
I datatypes can only contain datatypes, codatatypes only

codatatypes

I first-order theory undecidable; quantifier-free: decidable
I part of SMT-LIB (and SMT solvers Z3, CVC4, . . .)

10

Theory of Algebraic (Co)Datatypes
I Sorts: S = {nat , list}︸ ︷︷ ︸

Sdata

∪{colist}︸ ︷︷ ︸
Scodata

I Constructor symbols:
Fctr = {zero : list , succ : nat → nat , nil : list , . . . }
→ interpreted as tree constructors

I Selector symbols:
Fsel = {pred : nat → nat , head : list → list , . . . }
→ interpreted as selector functions: pred(succ(x)) = x

I Function symbols F = Fctr ∪ Fsel ; predicate symbols: P = ∅
I interpretations of datatype terms must be finite
I datatypes can only contain datatypes, codatatypes only

codatatypes
I first-order theory undecidable; quantifier-free: decidable
I part of SMT-LIB (and SMT solvers Z3, CVC4, . . .)

10

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

11

Contributions

I we extend Theory of Trees to many-sorted logic
I we formalize its relationship with (co)datatypes
I we design a simplification procedure/constraint solver for the

Extended Theory of Trees
I quantifiers allowed

I based on DJELLOUL, DAO, FRÜHWIRTH (2008)

I but: finitely many function symbols allowed!

I proved correctness
I implementation: evaluated on QF_DT suite of the SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

12

Contributions

I we extend Theory of Trees to many-sorted logic
I we formalize its relationship with (co)datatypes
I we design a simplification procedure/constraint solver for the

Extended Theory of Trees
I quantifiers allowed

I based on DJELLOUL, DAO, FRÜHWIRTH (2008)

I but: finitely many function symbols allowed!

I proved correctness
I implementation: evaluated on QF_DT suite of the SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

12

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

13

(Co)Datatypes Trees
data nat = zero | succ (pred: nat)
data list = nil | cons (head: nat, tail: list)
codata colist = conil | cocons(cohead:nat,cotail:colist)

(Co)datatypes
I Sorts: {nat , list , colist}
I Constructor symbols:
C = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols: S =
{pred : nat → nat , . . . }

Trees
I Sorts: {nat , list , colist}
I Function symbols:
F = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols:
x = pred(t)
 ∀y. t = succ(y)→ x = y

I add fin(t) for all datatypes

Example:

In: x = cons(zero, tail(w))

Out: fin(x) ∧ fin(w) ∧ ∀y : nat, z : list. w = cons(y, z)→ x = cons(zero, z)

14

(Co)Datatypes Trees

(Co)datatypes
I Sorts: {nat , list , colist}
I Constructor symbols:
C = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols: S =
{pred : nat → nat , . . . }

Trees
I Sorts: {nat , list , colist}
I Function symbols:
F = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols:
x = pred(t)
 ∀y. t = succ(y)→ x = y

I add fin(t) for all datatypes

Example:

In: x = cons(zero, tail(w))

Out: fin(x) ∧ fin(w) ∧ ∀y : nat, z : list. w = cons(y, z)→ x = cons(zero, z)

14

(Co)Datatypes Trees

(Co)datatypes
I Sorts: {nat , list , colist}
I Constructor symbols:
C = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols: S =
{pred : nat → nat , . . . }

Trees
I Sorts: {nat , list , colist}
I Function symbols:
F = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols:
x = pred(t)
 ∀y. t = succ(y)→ x = y

I add fin(t) for all datatypes

Example:

In: x = cons(zero, tail(w))

Out: fin(x) ∧ fin(w) ∧ ∀y : nat, z : list. w = cons(y, z)→ x = cons(zero, z)

14

(Co)Datatypes Trees

(Co)datatypes
I Sorts: {nat , list , colist}
I Constructor symbols:
C = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols: S =
{pred : nat → nat , . . . }

Trees
I Sorts: {nat , list , colist}
I Function symbols:
F = {zero : list , succ :
nat → nat , nil : list , . . . }

I Selector symbols:
x = pred(t)
 ∀y. t = succ(y)→ x = y

I add fin(t) for all datatypes

Example:

In: x = cons(zero, tail(w))

Out: fin(x) ∧ fin(w) ∧ ∀y : nat, z : list. w = cons(y, z)→ x = cons(zero, z)

14

(Co)Datatypes Trees

Theorem
A quantifier-free formula in the theory of (co)datatypes can be
effectively transformed into an equisatisfiable formula in the
extended theory of trees (possibly including quantifiers).

Why quantifier-free? → problem with unspecified selectors:
pred(zero) could be anything.

Theorem
If selectors return a specific default value when called on the
wrong constructor then any formula in the theory of
(co)datatypes can be effectively transformed into an
equisatisfiable one in the extended theory of trees.

15

(Co)Datatypes Trees

Theorem
A quantifier-free formula in the theory of (co)datatypes can be
effectively transformed into an equisatisfiable formula in the
extended theory of trees (possibly including quantifiers).

Why quantifier-free? → problem with unspecified selectors:
pred(zero) could be anything.

Theorem
If selectors return a specific default value when called on the
wrong constructor then any formula in the theory of
(co)datatypes can be effectively transformed into an
equisatisfiable one in the extended theory of trees.

15

(Co)Datatypes Trees

Theorem
A quantifier-free formula in the theory of (co)datatypes can be
effectively transformed into an equisatisfiable formula in the
extended theory of trees (possibly including quantifiers).

Why quantifier-free? → problem with unspecified selectors:
pred(zero) could be anything.

Theorem
If selectors return a specific default value when called on the
wrong constructor then any formula in the theory of
(co)datatypes can be effectively transformed into an
equisatisfiable one in the extended theory of trees.

15

Trees (Co)Datatypes?

I non-finite: ¬ fin(x) ???

I if finite then . . . else . . . : (fin(t)→ φ) ∨ (¬ fin(t)→ ψ) ???

I impossible!

=⇒ Trees are more expressive than (Co)Datatypes!

16

Trees (Co)Datatypes?

I non-finite: ¬ fin(x) ???

I if finite then . . . else . . . : (fin(t)→ φ) ∨ (¬ fin(t)→ ψ) ???

I impossible!

=⇒ Trees are more expressive than (Co)Datatypes!

16

Outline

Background
Trees
Algebraic (Co)Datatypes

Contributions
Relationship between trees and (co)datatypes
Deciding first-order theory of trees

17

Deciding the Extended Theory of Trees
DJELLOUL, DAO, AND FRÜHWIRTH (2008) designed a
simplification precedure:
I more than just a decision procedure
I outputs simplified formula (not just true or false)
I easy to read off all satisfying assignments to free variables

Their assumptions:
I just one sort
I infinitely many constructors/function symbols F

We lift those restrictions:
I many-sorted logic
I finitely many constructors allowed
→ can be used for (co)datatypes

18

Deciding the Extended Theory of Trees
DJELLOUL, DAO, AND FRÜHWIRTH (2008) designed a
simplification precedure:
I more than just a decision procedure
I outputs simplified formula (not just true or false)
I easy to read off all satisfying assignments to free variables
Their assumptions:
I just one sort
I infinitely many constructors/function symbols F

We lift those restrictions:
I many-sorted logic
I finitely many constructors allowed
→ can be used for (co)datatypes

18

Deciding the Extended Theory of Trees
DJELLOUL, DAO, AND FRÜHWIRTH (2008) designed a
simplification precedure:
I more than just a decision procedure
I outputs simplified formula (not just true or false)
I easy to read off all satisfying assignments to free variables
Their assumptions:
I just one sort
I infinitely many constructors/function symbols F

We lift those restrictions:
I many-sorted logic
I finitely many constructors allowed
→ can be used for (co)datatypes

18

Complications
With finitely many function symbols . . .

I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants
I bool = false | true

inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree.fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

19

Complications
With finitely many function symbols . . .

I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants
I bool = false | true

inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree. fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

19

Complications
With finitely many function symbols . . .

I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants
I bool = false | true

inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree. fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

19

The basic idea
Extension of DJELLOUL, DAO, FRÜHWIRTH (2008).

Perform case splitting:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α is transformed into
(∃x. x = zero ∧ α) ∨ (∃x, y. x = succ(y) ∧ α)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

20

The basic idea
Extension of DJELLOUL, DAO, FRÜHWIRTH (2008).

Perform case splitting:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α is transformed into
(∃x. x = zero ∧ α) ∨ (∃x, y. x = succ(y) ∧ α)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

20

The basic idea
Extension of DJELLOUL, DAO, FRÜHWIRTH (2008).

Perform case splitting:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α is transformed into
(∃x. x = zero ∧ α) ∨ (∃x, y. x = succ(y) ∧ α)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

20

Results
Theorem
I Our simplification procedure returns a simplified formula that

is equivalent in the Extended Theory of Trees.
I Simplified formula allows reading off all satisfying

assignments of free variables.
I If input formula is closed, the result is true or false.

→ proof in the paper

Demo!
Try it! → tinyurl.com/trees-codata
I x = succ(x) ∨ fin(x) true

I x 6= nil ∧ fin(x) ∃y, z. x = cons(y, z) ∧ fin(y) ∧ fin(z)

21

http://tinyurl.com/trees-codata

Results
Theorem
I Our simplification procedure returns a simplified formula that

is equivalent in the Extended Theory of Trees.
I Simplified formula allows reading off all satisfying

assignments of free variables.
I If input formula is closed, the result is true or false.

→ proof in the paper

Demo!
Try it! → tinyurl.com/trees-codata
I x = succ(x) ∨ fin(x) true

I x 6= nil ∧ fin(x) ∃y, z. x = cons(y, z) ∧ fin(y) ∧ fin(z)

21

http://tinyurl.com/trees-codata

Evaluation
Theory:
I worst-case: non-elementary time complexity
I but can’t do better (VOROBYOV 1996)

Practice:
I prototype implementation in Scala
I evaluated on 4000 tests of QF_DT (Quantifier-Free

DataTypes) suite of the SMT-LIB
I translate from Datatypes to Trees; then solve translated formula

I 90% took < 1 second; 5% timed out after 10 seconds

I standard SMT solvers have an advantage by solving the original
quantifier-free formula directly

I lots of “low-hanging fruit” for improvements

Try it yourself! → tinyurl.com/trees-codata

22

http://tinyurl.com/trees-codata

Evaluation
Theory:
I worst-case: non-elementary time complexity
I but can’t do better (VOROBYOV 1996)
Practice:
I prototype implementation in Scala
I evaluated on 4000 tests of QF_DT (Quantifier-Free

DataTypes) suite of the SMT-LIB
I translate from Datatypes to Trees; then solve translated formula

I 90% took < 1 second; 5% timed out after 10 seconds

I standard SMT solvers have an advantage by solving the original
quantifier-free formula directly

I lots of “low-hanging fruit” for improvements

Try it yourself! → tinyurl.com/trees-codata

22

http://tinyurl.com/trees-codata

Evaluation
Theory:
I worst-case: non-elementary time complexity
I but can’t do better (VOROBYOV 1996)
Practice:
I prototype implementation in Scala
I evaluated on 4000 tests of QF_DT (Quantifier-Free

DataTypes) suite of the SMT-LIB
I translate from Datatypes to Trees; then solve translated formula

I 90% took < 1 second; 5% timed out after 10 seconds

I standard SMT solvers have an advantage by solving the original
quantifier-free formula directly

I lots of “low-hanging fruit” for improvements

Try it yourself! → tinyurl.com/trees-codata
22

http://tinyurl.com/trees-codata

Summary

The Extended Theory of Trees is . . .
I useful: for (co)datatypes, logic programming, term rewriting,

verification, . . .
I powerful: more expressive than (co)datatypes
I decidable: even admits a simplification procedure

Future research:
I heuristics for simplification procedure
I Craig interpolation

23

Summary

The Extended Theory of Trees is . . .
I useful: for (co)datatypes, logic programming, term rewriting,

verification, . . .
I powerful: more expressive than (co)datatypes
I decidable: even admits a simplification procedure

Future research:
I heuristics for simplification procedure
I Craig interpolation

23

Backup slides

24

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

	Background
	Contributions
	Summary
	Appendix
	Appendix

