The Extended Theory of Trees and Algebraic (Co)datatypes

Fabian Zaiser Luke Ong

Department of Computer Science

SMT@CAV 2021

Algebraic datatypes (inductive datatypes)

data	nat	= zero	succ(pred:	nat)		
data	list	= nil	cons(head:	nat,	tail: list)	

Algebraic datatypes (inductive datatypes)

data	nat	= zero	succ(pred:	nat)	
data	list	= nil	cons(head:	nat,	tail: list)

Constructors: zero, succ, nil, cons

Selectors: pred, head, tail

Algebraic datatypes (inductive datatypes)

data	nat	= zero	succ(pred:	nat)		
data	list	= nil	cons(head:	nat,	tail:	list)

Constructors: zero, succ, nil, cons

Selectors: pred, head, tail

head(cons(x, y)) = x

SMT-LIB standard

SMT-LIB syntax:

```
(declare-datatypes
 ((nat 0)(list 0)) (
  ((zero) (succ (pred nat) ))
  ((nil) (cons (head nat) (tail list)))
 ))
```

Q: What is head(nil)?

SMT-LIB standard

SMT-LIB syntax:

Q: What is head(nil)?

A: result unspecified, but must be consistent

SMT-LIB standard

SMT-LIB syntax:

Q: What is head(nil)?

A: result unspecified, but must be consistent

~ quantified formulae become undecidable!

Algebraic Codatatypes (coinductive datatypes)

codata list = nil | cons(head: nat, tail: list)

let t = cons(zero, t)

→ allow infinite inhabitants: t = cons(zero, cons(zero, ...))

Algebraic Codatatypes (coinductive datatypes)

```
codata list = nil | cons(head: nat, tail: list)
```

let t = cons(zero, t)

→ allow infinite inhabitants: t = cons(zero, cons(zero, ...))

Why?

- dual of inductive datatypes
- Iazily evaluated infinite objects (e.g. in Haskell)
- useful in theorem provers (e.g. Coq, Lean)

Algebraic Codatatypes (coinductive datatypes)

```
codata list = nil | cons(head: nat, tail: list)
```

let t = cons(zero, t)

- → allow infinite inhabitants: t = cons(zero, cons(zero, ...))
 Why?
- dual of inductive datatypes
- Iazily evaluated infinite objects (e.g. in Haskell)
- useful in theorem provers (e.g. Coq, Lean)

Supported for SMT?

- X in SMT-LIB standard
- CVC4 (but not many more solvers)

(Co)datatypes: Pros/Cons

- ✓ datatypes part of SMT-LIB
- good support for datatypes

(Co)datatypes: Pros/Cons

- ✓ datatypes part of SMT-LIB
- good support for datatypes
- Iacking support for codatatypes
- X static finite/infinite separation
- first-order theory is undecidable

A different perspective: Trees

A different perspective: Trees

x = cons(zero, cons(succ(zero), x))

First-order Theory of Trees

only constructors, no selectors

First-order Theory of Trees

only constructors, no selectors

 Decision procedures: MAHER 1988 and COMON & LESCANNE 1989 (independently)

First-order Theory of Trees

only constructors, no selectors

 Decision procedures: MAHER 1988 and COMON & LESCANNE 1989 (independently)

applications:

- matching and unification
- semantics of logic & functional programs
- recursion schemes
- verification of programs
- term rewriting systems
- in this talk: algebraic (co)datatypes

An **Extended** Theory of Trees DJELLOUL, DAO, FRÜHWIRTH (2008)

add a finiteness predicate: fin(x)

~> can reason about finite & infinite trees within the same theory

An **Extended** Theory of Trees DJELLOUL, DAO, FRÜHWIRTH (2008)

add a finiteness predicate: fin(x)

- ~> can reason about finite & infinite trees within the same theory
 - they gave a decision procedure
- outputs a simplified formula
- easy to read off all models

Good properties

The (Extended) First-Order Theory of Trees ...

- ✓ has seen many applications
- ✓ is decidable
- even admits a simplification procedure
- can be used to solve formulae in the theory of (co)datatypes*
- ✓ is more expressive than (co)datatypes

Good properties

The (Extended) First-Order Theory of Trees ...

- ✓ has seen many applications
- ✓ is decidable
- even admits a simplification procedure
- can be used to solve formulae in the theory of (co)datatypes*
- ✓ is more expressive than (co)datatypes

\implies interesting theory for the SMT community

explain relationship between (co)datatypes and trees

- explain relationship between (co)datatypes and trees
- simplification procedure/constraint solver
 - allowing quantifiers
 - based on DJELLOUL, DAO, FRÜHWIRTH (2008) ...
 - ... but allowing finitely many constructors
 -which is necessary for (co)datatypes!

- explain relationship between (co)datatypes and trees
- simplification procedure/constraint solver
 - allowing quantifiers
 - based on DJELLOUL, DAO, FRÜHWIRTH (2008) ...
 - but allowing finitely many constructors
 -which is necessary for (co)datatypes!
- prototype implementation
- evaluation on SMT-LIB

- explain relationship between (co)datatypes and trees
- simplification procedure/constraint solver
 - allowing quantifiers
 - based on DJELLOUL, DAO, FRÜHWIRTH (2008) ...
 - but allowing finitely many constructors
 -which is necessary for (co)datatypes!
- prototype implementation
- evaluation on SMT-LIB
- \implies Extended Theory of Trees is useful and decidable

Part II: Relationship between (Co)datatypes and Trees

Concept	Trees (Co)datatyp		
x is finite	fin(x)	x is datatype	
x is finite or infinite	(default)	x is codatatype	

Concept	Trees	(Co)datatypes
x is finite	fin(x)	x is datatype
x is finite or infinite	(default)	x is codatatype
x is infinite	$\neg \operatorname{fin}(x)$	×
x is conditionally finite	$\phi \to \operatorname{fin}(x)$	×

Concept	Trees	(Co)datatypes
x is finite	fin(x)	x is datatype
x is finite or infinite	(default)	x is codatatype
x is infinite	$\neg \operatorname{fin}(x)$	×
x is conditionally finite	$\phi \to \operatorname{fin}(x)$	×

 \implies Trees more expressive than (co)datatypes

Concept	Trees	(Co)datatypes
x is finite	fin(x)	x is datatype
x is finite or infinite	(default)	x is codatatype
x is infinite	$\neg \operatorname{fin}(x)$	×
x is conditionally finite	$\phi \to \operatorname{fin}(x)$	×

 \implies Trees more expressive than (co)datatypes

... but datatypes have selectors?

Concept	Trees	(Co)datatypes
x is finite	fin(x)	x is datatype
x is finite or infinite	(default)	x is codatatype
x is infinite	$\neg \operatorname{fin}(x)$	×
x is conditionally finite	$\phi \to \operatorname{fin}(x)$	×

- \implies Trees more expressive than (co)datatypes
- ... but datatypes have selectors? We can get rid of them ...

Translating (quantifier-free) (co)datatypes to trees

Input: tail(v) = cons(zero, tail(w))

Translating (quantifier-free) (co)datatypes to trees 1. extract selectors to simple equations

Input:
$$tail(v) = cons(zero, tail(w))$$

Output: $tail(v) = cons(zero, tail(w))$

Translating (quantifier-free) (co)datatypes to trees

1. extract selectors to simple equations

Input:
$$tail(v) = cons(zero, tail(w))$$

Output: $\exists x, y. \quad x = cons(zero, \quad y \quad)$
 $\land \qquad x = tail(v)$
 $\land \qquad y = tail(w)$

Translating (quantifier-free) (co)datatypes to trees

- 1. extract selectors to simple equations
- 2. add equations for congruence

Input:
$$tail(v) = cons(zero, tail(w))$$

Output: $\exists x, y. \quad x = cons(zero, y)$
 $\land \qquad x = tail(v)$
 $\land \qquad y = tail(w)$
- 1. extract selectors to simple equations
- 2. add equations for congruence

Input: tail(v) = cons(zero, tail(w))Output: $\exists x, y. \quad x = cons(zero, y)$ $\land \qquad x = tail(v)$ $\land \qquad y = tail(w)$ $\land (v = w \rightarrow x = y)$

- 1. extract selectors to simple equations
- 2. add equations for congruence
- 3. eliminate selectors: $x = tail(t) \rightsquigarrow \forall y, z, t = cons(y, z) \rightarrow x = z$

Input: tail(v) = cons(zero, tail(w))Output: $\exists x, y. \quad x = cons(zero, y)$ $\land \qquad x = tail(v)$ $\land \qquad y = tail(w)$ $\land (v = w \rightarrow x = y)$

- 1. extract selectors to simple equations
- 2. add equations for congruence
- 3. eliminate selectors: $x = tail(t) \rightsquigarrow \forall y, z, t = cons(y, z) \rightarrow x = z$

Input: tail(v) = cons(zero, tail(w))Output: $\exists x, y. \quad x = cons(zero, y)$ $\land (\forall a, b. v = cons(a, b) \rightarrow x = b)$ $\land (\forall c, d. w = cons(c, d) \rightarrow y = d)$ $\land (v = w \rightarrow x = y)$

- 1. extract selectors to simple equations
- 2. add equations for congruence

3. eliminate selectors: $x = tail(t) \rightsquigarrow \forall y, z, t = cons(y, z) \rightarrow x = z$

4. add fin for datatypes

(

Input: tail(v) = cons(zero, tail(w))

Output:
$$\exists x, y. \quad x = \operatorname{cons}(\operatorname{zero}, \quad y \quad)$$

 $\land (\forall a, b, v = \operatorname{cons}(a, b) \to x = b)$
 $\land (\forall c, d, w = \operatorname{cons}(c, d) \to y = d)$
 $\land (v = w \to x = y)$

- 1. extract selectors to simple equations
- 2. add equations for congruence

3. eliminate selectors: $x = tail(t) \rightsquigarrow \forall y, z, t = cons(y, z) \rightarrow x = z$

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output:
$$\exists x, y. \quad x = \operatorname{cons}(\operatorname{zero}, y)$$

 $\land (\forall a, b. v = \operatorname{cons}(a, b) \rightarrow x = b)$
 $\land (\forall c, d. w = \operatorname{cons}(c, d) \rightarrow y = d)$
 $\land (v = w \rightarrow x = y)$
 $\land \operatorname{fin}(v) \land \operatorname{fin}(w)$

- 1. extract selectors to simple equations
- 2. add equations for congruence

3. eliminate selectors: $x = tail(t) \rightsquigarrow \forall y, z, t = cons(y, z) \rightarrow x = z$

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output:
$$\exists x, y.$$
 $x = \operatorname{cons}(\operatorname{zero}, y)$
 $\land (\forall a, b. v = \operatorname{cons}(a, b) \rightarrow x = b)$
 $\land (\forall c, d. w = \operatorname{cons}(c, d) \rightarrow y = d)$
 $\land (v = w \rightarrow x = y)$
 $\land \operatorname{fin}(v) \land \operatorname{fin}(w)$

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

Q: What about quantifiers?

- Q: What about quantifiers?
- A: impossible (because of undecidability)

- Q: What about quantifiers?
- A: impossible (because of undecidability)
- Q: What if we change the semantics of selectors?

- Q: What about quantifiers?
- A: impossible (because of undecidability)
- Q: What if we change the semantics of selectors?
- A: With default values, it's possible
 - selectors must return a fixed default value when applied to the wrong constructor
 - e.g. require tail(nil) = nil.

- Q: What about quantifiers?
- A: impossible (because of undecidability)
- Q: What if we change the semantics of selectors?
- A: With default values, it's possible
 - selectors must return a fixed default value when applied to the wrong constructor
 - e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an equisatisfiable one in Trees.

Trees vs (co)datatypes: relationship

Part III: Decision procedures

• works on normal forms ϕ :

$$\phi \equiv \exists \bar{x}_{\cdot} \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i}$$
"simple conjunction" nested normal form

• works on normal forms ϕ :

$$\phi \equiv \exists \bar{x}_{\cdot} \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i}$$
"simple conjunction" nested normal form

16 rewrite rules

• works on normal forms ϕ :

$$\phi \equiv \exists \bar{x}. \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i}$$
 "simple conjunction" nested normal form

- 16 rewrite rules
- simplified formula: nested only once + more conditions
- ► Example: $x = \operatorname{succ}(y) \land \operatorname{fin}(y) \land \neg(\exists w. y = \operatorname{succ}(w) \land \operatorname{fin}(z))$

• works on normal forms ϕ :

$$\phi \equiv \exists \bar{x}. \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i}$$
 "simple conjunction" nested normal form

- 16 rewrite rules
- simplified formula: nested only once + more conditions
- ► Example: $x = \operatorname{succ}(y) \land \operatorname{fin}(y) \land \neg(\exists w. y = \operatorname{succ}(w) \land \operatorname{fin}(z))$
- Restriction: infinitely many constructors required
- → useless for (co)datatypes
- Our contribution: lift this restriction

case analysis on constructors:

 $\blacktriangleright \quad \forall x : nat. \, x = \mathsf{zero} \lor \exists y : nat. \, x = \mathsf{succ}(y) \rightsquigarrow \checkmark$

$$\forall y : nat. \, x \neq \mathsf{succ}(y) \rightsquigarrow x = \mathsf{zero}$$

case analysis on constructors:

 $\blacktriangleright \quad \forall x : nat. \, x = \mathsf{zero} \lor \exists y : nat. \, x = \mathsf{succ}(y) \rightsquigarrow \checkmark$

$$\forall y : nat. \, x \neq \mathsf{succ}(y) \rightsquigarrow x = \mathsf{zero}$$

sorts with only (in)finite inhabitants

bool = false | trueinftree = c1(inftree) | c2(inftree)

- $\blacktriangleright \quad \forall x: bool. fin(x) \rightsquigarrow \checkmark$
- $\blacktriangleright \quad \forall x : inftree. fin(x) \rightsquigarrow \checkmark$

case analysis on constructors:

 $\blacktriangleright \quad \forall x : nat. \, x = \mathsf{zero} \lor \exists y : nat. \, x = \mathsf{succ}(y) \rightsquigarrow \checkmark$

$$\forall y: nat. \, x \neq \mathsf{succ}(y) \rightsquigarrow x = \mathsf{zero}$$

sorts with only (in)finite inhabitants

 $bool = false \mid true$ $inftree = c1(inftree) \mid c2(inftree)$

- $\blacktriangleright \quad \forall x: bool. fin(x) \rightsquigarrow \checkmark$
- $\blacktriangleright \quad \forall x : inftree. fin(x) \rightsquigarrow \checkmark$

unique infinite inhabitants

$$\blacktriangleright \neg \operatorname{fin}(x: nat) \rightsquigarrow x = \operatorname{succ}(x)$$

Deciding the Extended Theory of Trees

Our extended algorithm for the general setting

Idea: case splits

Deciding the Extended Theory of Trees Our extended algorithm for the general setting Idea: case splits

for sorts with finitely many constructors:

• if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$

► Example: input $\exists x : nat. \alpha \land \cdots$ is transformed into $(\exists x. x = \text{zero} \land \alpha \land \cdots) \lor (\exists x, y. x = \text{succ}(y) \land \alpha \land \cdots)$ Deciding the Extended Theory of Trees Our extended algorithm for the general setting Idea: case splits

for sorts with finitely many constructors:

• if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$

► Example: input $\exists x : nat. \alpha \land \cdots$ is transformed into $(\exists x. x = \text{zero} \land \alpha \land \cdots) \lor (\exists x, y. x = \text{succ}(y) \land \alpha \land \cdots)$

for sorts with finitely many (in)finite inhabitants:

• if x : nat then $fin(x) \lor x = succ(x)$

Deciding the Extended Theory of Trees Our extended algorithm for the general setting Idea: case splits

- for sorts with finitely many constructors:
 - if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$
 - ► Example: input $\exists x : nat. \alpha \land \cdots$ is transformed into $(\exists x. x = \text{zero} \land \alpha \land \cdots) \lor (\exists x, y. x = \text{succ}(y) \land \alpha \land \cdots)$
- for sorts with finitely many (in)finite inhabitants:
 - if x : nat then $fin(x) \lor x = succ(x)$
- but be clever about when to case split
 - avoid unnecessary work
 - avoid infinite loops

Results

Theorem

- Our simplification procedure returns a simplified formula that is equivalent in the Extended Theory of Trees.
- Simplified formula allows reading off all satisfying assignments of free variables.
- ► If input formula is closed, the result is true or false.

 \rightarrow proof in the paper

Results

Theorem

- Our simplification procedure returns a simplified formula that is equivalent in the Extended Theory of Trees.
- Simplified formula allows reading off all satisfying assignments of free variables.
- ▶ If input formula is closed, the result is true or false.
- \rightarrow proof in the paper

Examples

$$x = \operatorname{succ}(x) \lor \operatorname{fin}(x) \quad \rightsquigarrow \quad \operatorname{true}$$

 $\blacktriangleright \ x \neq \mathsf{nil} \land \mathsf{fin}(x) \quad \rightsquigarrow \quad \exists y, z. \, x = \mathsf{cons}(y, z) \land \mathsf{fin}(y) \land \mathsf{fin}(z)$

Implementation

- prototype implementation in Scala
- translates (co)datatypes \rightarrow trees
 - standard semantics (SMT-LIB) or
 - selector semantics with default values
- implements the simplification procedure

Try it online! \rightarrow tinyurl.com/trees-codata

Evaluation

In theory:

- worst case: non-elementary time complexity
- cannot do better (VOROBYOV 1996)

Evaluation

In theory:

- worst case: non-elementary time complexity
- cannot do better (VOROBYOV 1996)

In practice:

- evaluated on 4000 tests of QF_DT suite of the SMT-LIB
- translate from datatypes to trees, then solve
- 90% took < 1 second</p>
- 5% timed out after 10 seconds
- lots of "low-hanging fruit" for improvements

Conclusion

The Extended Theory of Trees is ...

- useful: for (co)datatypes, logic programming, term rewriting, verification, ...
- powerful: more expressive than (co)datatypes
- decidable: even admits a simplification procedure

Conclusion

The Extended Theory of Trees is

- useful: for (co)datatypes, logic programming, term rewriting, verification, ...
- powerful: more expressive than (co)datatypes
- decidable: even admits a simplification procedure

For details ...

- Fabian Zaiser, Luke Ong. The Extended Theory of Trees and Algebraic (Co)datatypes. HCVS@ETAPS2020
- Implementation: tinyurl.com/trees-codata

Backup slides

The basic idea Manipulate normal forms ϕ (DJELLOUL, ET AL 2008):

$$\phi \equiv \exists \bar{x}_{\cdot} \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i} \longleftarrow$$

"simple conjunction"

nested normal form

The basic idea Manipulate normal forms ϕ (DJELLOUL, ET AL 2008):

$$\phi \equiv \exists \bar{x}. \ \alpha \ \land \bigwedge_{i=1}^{n} \neg \ \phi_{i} \longleftarrow$$

"simple conjunction"

nested normal form

Perform case analysis:

- for sorts with finitely many constructors:
 - if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$

$$\exists x : nat. \alpha \land \dots \\ \rightsquigarrow (\exists x. x = \mathsf{zero} \land \alpha \land \dots) \lor (\exists x, y. x = \mathsf{succ}(y) \land \alpha \land \dots)$$

The basic idea Manipulate normal forms ϕ (DJELLOUL, ET AL 2008):

$$\phi \equiv \exists \bar{x} \alpha \land \bigwedge_{i=1}^{n} \neg \phi_i$$

"simple conjunction"

nested normal form

Perform case analysis:

- for sorts with finitely many constructors:
 - if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$

$$\exists x : nat. \alpha \land \dots \\ \rightsquigarrow (\exists x. x = \mathsf{zero} \land \alpha \land \dots) \lor (\exists x, y. x = \mathsf{succ}(y) \land \alpha \land \dots)$$

for sorts with finitely many (in)finite inhabitants:

• if
$$x : nat$$
 then $fin(x) \lor x = succ(x)$
The basic idea Manipulate normal forms ϕ (DJELLOUL, ET AL 2008):

$$\phi \equiv \exists \bar{x}. \alpha \land \bigwedge_{i=1}^{n} \neg \phi_{i} \longleftarrow$$

"simple conjunction"

nested normal form

Perform case analysis:

- for sorts with finitely many constructors:
 - if x : nat then $x = \text{zero} \lor \exists y.x = \text{succ}(y)$

$$\exists x : nat. \alpha \land \dots \rightsquigarrow (\exists x. x = \mathsf{zero} \land \alpha \land \dots) \lor (\exists x, y. x = \mathsf{succ}(y) \land \alpha \land \dots)$$

for sorts with finitely many (in)finite inhabitants:

if
$$x : nat$$
 then $fin(x) \lor x = succ(x)$

but avoid infinite loops:

 $x = \operatorname{succ}(x) \quad \rightsquigarrow \quad \exists y.x = \operatorname{succ}(y) \land y = \operatorname{succ}(y) \quad \rightsquigarrow$