
The Extended Theory of Trees and
Algebraic (Co)datatypes

Fabian Zaiser Luke Ong

Department of Computer Science

SMT@CAV 2021

1

Algebraic datatypes (inductive datatypes)

data nat = zero | succ(pred: nat)
data list = nil | cons(head: nat, tail: list)

Constructors: zero, succ, nil, cons

Selectors: pred, head, tail

head(cons(x, y)) = x

2

Algebraic datatypes (inductive datatypes)

data nat = zero | succ(pred: nat)
data list = nil | cons(head: nat, tail: list)

Constructors: zero, succ, nil, cons

Selectors: pred, head, tail

head(cons(x, y)) = x

2

Algebraic datatypes (inductive datatypes)

data nat = zero | succ(pred: nat)
data list = nil | cons(head: nat, tail: list)

Constructors: zero, succ, nil, cons

Selectors: pred, head, tail

head(cons(x, y)) = x

2

SMT-LIB standard

SMT-LIB syntax:

(declare-datatypes
((nat 0)(list 0)) (
((zero) (succ (pred nat)))
((nil) (cons (head nat) (tail list)))

))

Q: What is head(nil)?

A: result unspecified, but must be consistent

 quantified formulae become undecidable!

3

SMT-LIB standard

SMT-LIB syntax:

(declare-datatypes
((nat 0)(list 0)) (
((zero) (succ (pred nat)))
((nil) (cons (head nat) (tail list)))

))

Q: What is head(nil)?

A: result unspecified, but must be consistent

 quantified formulae become undecidable!

3

SMT-LIB standard

SMT-LIB syntax:

(declare-datatypes
((nat 0)(list 0)) (
((zero) (succ (pred nat)))
((nil) (cons (head nat) (tail list)))

))

Q: What is head(nil)?

A: result unspecified, but must be consistent

 quantified formulae become undecidable!

3

Algebraic Codatatypes (coinductive datatypes)

codata list = nil | cons(head: nat, tail: list)

let t = cons(zero, t)

→ allow infinite inhabitants: t = cons(zero, cons(zero, ...))

Why?
I dual of inductive datatypes
I lazily evaluated infinite objects (e.g. in Haskell)
I useful in theorem provers (e.g. Coq, Lean)

Supported for SMT?
7 in SMT-LIB standard

3 CVC4 (but not many more solvers)

4

Algebraic Codatatypes (coinductive datatypes)

codata list = nil | cons(head: nat, tail: list)

let t = cons(zero, t)

→ allow infinite inhabitants: t = cons(zero, cons(zero, ...))

Why?
I dual of inductive datatypes
I lazily evaluated infinite objects (e.g. in Haskell)
I useful in theorem provers (e.g. Coq, Lean)

Supported for SMT?
7 in SMT-LIB standard

3 CVC4 (but not many more solvers)

4

Algebraic Codatatypes (coinductive datatypes)

codata list = nil | cons(head: nat, tail: list)

let t = cons(zero, t)

→ allow infinite inhabitants: t = cons(zero, cons(zero, ...))

Why?
I dual of inductive datatypes
I lazily evaluated infinite objects (e.g. in Haskell)
I useful in theorem provers (e.g. Coq, Lean)

Supported for SMT?
7 in SMT-LIB standard

3 CVC4 (but not many more solvers)

4

(Co)datatypes: Pros/Cons

3 datatypes part of SMT-LIB

3 good support for datatypes

7 lacking support for
codatatypes

7 static finite/infinite separation

7 first-order theory is
undecidable

5

(Co)datatypes: Pros/Cons

3 datatypes part of SMT-LIB

3 good support for datatypes

7 lacking support for
codatatypes

7 static finite/infinite separation

7 first-order theory is
undecidable

5

A different perspective: Trees

cons

cons

nilzero

succ

zero

x = cons(succ(zero), cons(zero, nil))

cons

cons

cons

cons

. . .succ

zero

zero

succ

zero

zero

x = cons(zero, cons(succ(zero), x))

6

A different perspective: Trees

cons

cons

nilzero

succ

zero

x = cons(succ(zero), cons(zero, nil))

cons

cons

cons

cons

. . .succ

zero

zero

succ

zero

zero

x = cons(zero, cons(succ(zero), x))

6

First-order Theory of Trees

only constructors, no selectors

I Decision procedures: MAHER 1988 and COMON &
LESCANNE 1989 (independently)

I applications:
I matching and unification

I semantics of logic & functional programs

I recursion schemes

I verification of programs

I term rewriting systems

I in this talk: algebraic (co)datatypes

7

First-order Theory of Trees

only constructors, no selectors

I Decision procedures: MAHER 1988 and COMON &
LESCANNE 1989 (independently)

I applications:
I matching and unification

I semantics of logic & functional programs

I recursion schemes

I verification of programs

I term rewriting systems

I in this talk: algebraic (co)datatypes

7

First-order Theory of Trees

only constructors, no selectors

I Decision procedures: MAHER 1988 and COMON &
LESCANNE 1989 (independently)

I applications:
I matching and unification

I semantics of logic & functional programs

I recursion schemes

I verification of programs

I term rewriting systems

I in this talk: algebraic (co)datatypes

7

An Extended Theory of Trees
DJELLOUL, DAO, FRÜHWIRTH (2008)

add a finiteness predicate: fin(x)

 can reason about finite & infinite trees within the same theory

I they gave a decision procedure
I outputs a simplified formula
I easy to read off all models

8

An Extended Theory of Trees
DJELLOUL, DAO, FRÜHWIRTH (2008)

add a finiteness predicate: fin(x)

 can reason about finite & infinite trees within the same theory
I they gave a decision procedure
I outputs a simplified formula
I easy to read off all models

8

Good properties

The (Extended) First-Order Theory of Trees . . .

3 has seen many applications

3 is decidable

3 even admits a simplification procedure

3 can be used to solve formulae in the theory of (co)datatypes*

3 is more expressive than (co)datatypes

=⇒ interesting theory for the SMT community

9

Good properties

The (Extended) First-Order Theory of Trees . . .

3 has seen many applications

3 is decidable

3 even admits a simplification procedure

3 can be used to solve formulae in the theory of (co)datatypes*

3 is more expressive than (co)datatypes

=⇒ interesting theory for the SMT community

9

Contributions

I explain relationship between (co)datatypes and trees

I simplification procedure/constraint solver
I allowing quantifiers

I based on DJELLOUL, DAO, FRÜHWIRTH (2008) . . .

I . . . but allowing finitely many constructors

I . . . which is necessary for (co)datatypes!

I prototype implementation
I evaluation on SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

10

Contributions

I explain relationship between (co)datatypes and trees
I simplification procedure/constraint solver
I allowing quantifiers

I based on DJELLOUL, DAO, FRÜHWIRTH (2008) . . .

I . . . but allowing finitely many constructors

I . . . which is necessary for (co)datatypes!

I prototype implementation
I evaluation on SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

10

Contributions

I explain relationship between (co)datatypes and trees
I simplification procedure/constraint solver
I allowing quantifiers

I based on DJELLOUL, DAO, FRÜHWIRTH (2008) . . .

I . . . but allowing finitely many constructors

I . . . which is necessary for (co)datatypes!

I prototype implementation
I evaluation on SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

10

Contributions

I explain relationship between (co)datatypes and trees
I simplification procedure/constraint solver
I allowing quantifiers

I based on DJELLOUL, DAO, FRÜHWIRTH (2008) . . .

I . . . but allowing finitely many constructors

I . . . which is necessary for (co)datatypes!

I prototype implementation
I evaluation on SMT-LIB

=⇒ Extended Theory of Trees is useful and decidable

10

Part II: Relationship between
(Co)datatypes and Trees

11

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors? We can get rid of them . . .

12

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors? We can get rid of them . . .

12

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors? We can get rid of them . . .

12

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors? We can get rid of them . . .

12

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors?

We can get rid of them . . .

12

Expressivity

Concept Trees (Co)datatypes

x is finite fin(x) x is datatype

x is finite or infinite (default) x is codatatype

x is infinite ¬ fin(x) 7

x is conditionally finite φ→ fin(x) 7

=⇒ Trees more expressive than (co)datatypes

. . . but datatypes have selectors? We can get rid of them . . .

12

Translating (quantifier-free) (co)datatypes to trees

1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output:

∃x, y.

tail(v) = cons(zero, tail(w))

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output:

∃x, y.

tail(v) = cons(zero, tail(w))

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ x = tail(v)

∧ y = tail(w)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ (∀a, b. v = cons(a, b)→ x = b)

∧ (∀c, d. w = cons(c, d)→ y = d)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ (∀a, b. v = cons(a, b)→ x = b)

∧ (∀c, d. w = cons(c, d)→ y = d)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ (∀a, b. v = cons(a, b)→ x = b)

∧ (∀c, d. w = cons(c, d)→ y = d)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.

13

Translating (quantifier-free) (co)datatypes to trees
1. extract selectors to simple equations

2. add equations for congruence

3. eliminate selectors: x = tail(t) ∀y, z. t = cons(y, z)→ x = z

4. add fin for datatypes

Input: tail(v) = cons(zero, tail(w))

Output: ∃x, y. x = cons(zero, y)

∧ (∀a, b. v = cons(a, b)→ x = b)

∧ (∀c, d. w = cons(c, d)→ y = d)

∧ (v = w → x = y)

∧ fin(v) ∧ fin(w)

Theorem (for quantifier-free formulae)

The result is equisatisfiable in the Extended Theory of Trees.
13

Translating quantified formulae
Q: What about quantifiers?

A: impossible (because of undecidability)

Q: What if we change the semantics of selectors?

A: With default values, it’s possible
I selectors must return a fixed default value when applied to the

wrong constructor

I e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an
equisatisfiable one in Trees.

14

Translating quantified formulae
Q: What about quantifiers?

A: impossible (because of undecidability)

Q: What if we change the semantics of selectors?

A: With default values, it’s possible
I selectors must return a fixed default value when applied to the

wrong constructor

I e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an
equisatisfiable one in Trees.

14

Translating quantified formulae
Q: What about quantifiers?

A: impossible (because of undecidability)

Q: What if we change the semantics of selectors?

A: With default values, it’s possible
I selectors must return a fixed default value when applied to the

wrong constructor

I e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an
equisatisfiable one in Trees.

14

Translating quantified formulae
Q: What about quantifiers?

A: impossible (because of undecidability)

Q: What if we change the semantics of selectors?

A: With default values, it’s possible
I selectors must return a fixed default value when applied to the

wrong constructor

I e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an
equisatisfiable one in Trees.

14

Translating quantified formulae
Q: What about quantifiers?

A: impossible (because of undecidability)

Q: What if we change the semantics of selectors?

A: With default values, it’s possible
I selectors must return a fixed default value when applied to the

wrong constructor

I e.g. require tail(nil) = nil.

Theorem (for selectors with default values)

We can translate any quantified formula in (Co)datatypes to an
equisatisfiable one in Trees.

14

Trees vs (co)datatypes: relationship

Theory of
(Co)datatypes

Extended
Theory of Trees

3 in decidable situations

7 due to ¬ fin(x) . . .

15

Part III: Decision procedures

16

Deciding the Extended Theory of Trees
Original algorithm (DJELLOUL, ET AL 2008)

I works on normal forms φ:

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

I 16 rewrite rules
I simplified formula: nested only once + more conditions
I Example: x = succ(y) ∧ fin(y) ∧ ¬(∃w. y = succ(w) ∧ fin(z))

I Restriction: infinitely many constructors required

 useless for (co)datatypes
I Our contribution: lift this restriction

17

Deciding the Extended Theory of Trees
Original algorithm (DJELLOUL, ET AL 2008)

I works on normal forms φ:

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

I 16 rewrite rules

I simplified formula: nested only once + more conditions
I Example: x = succ(y) ∧ fin(y) ∧ ¬(∃w. y = succ(w) ∧ fin(z))

I Restriction: infinitely many constructors required

 useless for (co)datatypes
I Our contribution: lift this restriction

17

Deciding the Extended Theory of Trees
Original algorithm (DJELLOUL, ET AL 2008)

I works on normal forms φ:

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

I 16 rewrite rules
I simplified formula: nested only once + more conditions
I Example: x = succ(y) ∧ fin(y) ∧ ¬(∃w. y = succ(w) ∧ fin(z))

I Restriction: infinitely many constructors required

 useless for (co)datatypes
I Our contribution: lift this restriction

17

Deciding the Extended Theory of Trees
Original algorithm (DJELLOUL, ET AL 2008)

I works on normal forms φ:

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

I 16 rewrite rules
I simplified formula: nested only once + more conditions
I Example: x = succ(y) ∧ fin(y) ∧ ¬(∃w. y = succ(w) ∧ fin(z))

I Restriction: infinitely many constructors required

 useless for (co)datatypes
I Our contribution: lift this restriction

17

Challenges in the unrestricted setting

I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants

bool = false | true
inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree.fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

18

Challenges in the unrestricted setting
I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants

bool = false | true
inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree.fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

18

Challenges in the unrestricted setting
I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants

bool = false | true
inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree. fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

18

Challenges in the unrestricted setting
I case analysis on constructors:
I ∀x : nat . x = zero ∨ ∃y : nat. x = succ(y) 3

I ∀y : nat. x 6= succ(y) x = zero

I sorts with only (in)finite inhabitants

bool = false | true
inftree = c1(inftree) | c2(inftree)

I ∀x : bool .fin(x) 3

I ∀x : inftree. fin(x) 7

I unique infinite inhabitants
I ¬fin(x : nat) x = succ(x)

18

Deciding the Extended Theory of Trees
Our extended algorithm for the general setting

Idea: case splits

I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α ∧ · · · is transformed into
(∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

19

Deciding the Extended Theory of Trees
Our extended algorithm for the general setting

Idea: case splits

I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α ∧ · · · is transformed into
(∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

19

Deciding the Extended Theory of Trees
Our extended algorithm for the general setting

Idea: case splits

I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α ∧ · · · is transformed into
(∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

19

Deciding the Extended Theory of Trees
Our extended algorithm for the general setting

Idea: case splits

I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I Example: input ∃x : nat . α ∧ · · · is transformed into
(∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but be clever about when to case split
I avoid unnecessary work

I avoid infinite loops

19

Results
Theorem
I Our simplification procedure returns a simplified formula that

is equivalent in the Extended Theory of Trees.
I Simplified formula allows reading off all satisfying

assignments of free variables.
I If input formula is closed, the result is true or false.

→ proof in the paper

Examples

I x = succ(x) ∨ fin(x) true

I x 6= nil ∧ fin(x) ∃y, z. x = cons(y, z) ∧ fin(y) ∧ fin(z)

20

Results
Theorem
I Our simplification procedure returns a simplified formula that

is equivalent in the Extended Theory of Trees.
I Simplified formula allows reading off all satisfying

assignments of free variables.
I If input formula is closed, the result is true or false.

→ proof in the paper

Examples

I x = succ(x) ∨ fin(x) true

I x 6= nil ∧ fin(x) ∃y, z. x = cons(y, z) ∧ fin(y) ∧ fin(z)

20

Implementation

I prototype implementation in Scala
I translates (co)datatypes→ trees
I standard semantics (SMT-LIB) or

I selector semantics with default values

I implements the simplification procedure

Try it online! → tinyurl.com/trees-codata

21

http://tinyurl.com/trees-codata

Evaluation

In theory:
I worst case: non-elementary

time complexity
I cannot do better (VOROBYOV

1996)

In practice:
I evaluated on 4000 tests of

QF_DT suite of the SMT-LIB
I translate from datatypes to

trees, then solve
I 90% took < 1 second
I 5% timed out after 10

seconds
I lots of “low-hanging fruit” for

improvements

22

Evaluation

In theory:
I worst case: non-elementary

time complexity
I cannot do better (VOROBYOV

1996)

In practice:
I evaluated on 4000 tests of

QF_DT suite of the SMT-LIB
I translate from datatypes to

trees, then solve
I 90% took < 1 second
I 5% timed out after 10

seconds
I lots of “low-hanging fruit” for

improvements

22

Conclusion

The Extended Theory of Trees is . . .
I useful: for (co)datatypes, logic programming, term rewriting,

verification, . . .
I powerful: more expressive than (co)datatypes
I decidable: even admits a simplification procedure

For details . . .
I Fabian Zaiser, Luke Ong. The Extended Theory of Trees

and Algebraic (Co)datatypes. HCVS@ETAPS2020
I Implementation: tinyurl.com/trees-codata

23

https://doi.org/10.4204/EPTCS.320.14
https://doi.org/10.4204/EPTCS.320.14
http://tinyurl.com/trees-codata

Conclusion

The Extended Theory of Trees is . . .
I useful: for (co)datatypes, logic programming, term rewriting,

verification, . . .
I powerful: more expressive than (co)datatypes
I decidable: even admits a simplification procedure

For details . . .
I Fabian Zaiser, Luke Ong. The Extended Theory of Trees

and Algebraic (Co)datatypes. HCVS@ETAPS2020
I Implementation: tinyurl.com/trees-codata

23

https://doi.org/10.4204/EPTCS.320.14
https://doi.org/10.4204/EPTCS.320.14
http://tinyurl.com/trees-codata

Backup slides

24

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

The basic idea
Manipulate normal forms φ (DJELLOUL, ET AL 2008):

φ ≡ ∃x̄. α ∧
n∧

i=1

¬ φi

“simple conjunction” nested normal form

Perform case analysis:
I for sorts with finitely many constructors:
I if x : nat then x = zero ∨ ∃y.x = succ(y)

I ∃x : nat . α ∧ . . .
 (∃x. x = zero ∧ α ∧ · · ·) ∨ (∃x, y. x = succ(y) ∧ α ∧ · · ·)

I for sorts with finitely many (in)finite inhabitants:
I if x : nat then fin(x) ∨ x = succ(x)

I but avoid infinite loops:
x = succ(x) ∃y.x = succ(y) ∧ y = succ(y) . . .

25

	Appendix
	Appendix

