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A random walk as a probabilistic program

start = sample uniform (0, 3)
position = start; distance = 0
while position > O0:

step = sample uniform(-1, 1)

position += step

distance += abs(step)
observe 1.1 from normal (distance, 0.17?)
return start

What is p(start | observation)? — Bayesian inference
» continuous distributions

» unbounded loops
» unbounded number of samples
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2. Exact: posterior = X
» symbolic expression
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> approximate methods: convergence (e.g. for multimodal
models)

> exact methods: restricted models (e.g. no recursion)
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Rigorous Bounds on the Posterior:
posterior(E) € [a, b]
.. for
» a universal PPL (including branching & recursion)
» with continuous distributions

» and conditioning (observe)

Why?

» construct ground truth for inference problems
» to debug approximate inference

How?

1. interval traces & interval arithmetic (basic idea)
2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)
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Semantics of a probabilistic program
Let P : R a probabilistic program.
» trace space: T := {J, .y R"

» value function: valp : T — R

» weight function: wtp : T — [0, 00)
Unnormalized posterior of an event £

[PI(E) = / wtp(t) dt = “P(start € E A obs)”

vall_gl(E)

Bayes’ rule:

1
P(start € £ | obs) = ZIP’(start € ENnobs) where Z := P(obs)
Normalized posterior:

posteriorp(E) 1= %HP]](E) where Z := [P](R).



Method 1: Interval traces

standard semantics

traces (0.2,0.8)
T:=U,enR"
value valp: T — R
weight wtp : T — [0, 00)
posterior [P](E)

integral over T



Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics interval semantics
traces (0.2,0.8) ([0.2,0.3],]0.7,0.8])
T:=U,enR" Tr = U, enI"
value valp : T — R valp, : Ty — 1
weight wtp : T — [0, 00) wth : Ty = g o)
posterior [P](E) llowerBdZ (E), upperBd](E)]

integral over T sum over partition 7 C Ty
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Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) ~ 24 [0.53,3.99]

return value val(t) 0.6 [0.5,0.6]
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lowerBd 7, (1)
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Soundness

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a finite set 7 C Ty s.t.
[P](I) < lowerBd}L(I) + ¢

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.

10
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Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

> types keep track of the value and weight interval

ey {[[w”fu]]} means valp(t) € [v, /] and wip(t) € [w, /).

)

» efficient type inference

» uses interval arithmetic & widening to approximate fixpoints
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Method 3: Symbolic execution
— optimization for a common special case

For each program path,
» «i: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P)(I Z/A da<ZvolAU{V€I} [ max.w

paths U{VEI} paths We=

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

> linear optimization & interval arithmetic
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Examples that are hard for MCMC
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Comparison with previous work
Sankaranarayanan et al. (PLDI13)
» bounding probabilities (but no observe)

» ours is usually slower, but often better bounds
PSI solver

» consistency check: benchmarks from the PSI repository
» we can handle unbounded loops, contrary to PSI

I ours - - Il bounded loop
04 . P 08 .- | HEE unbounded
0.3 0.6 -
0.2 04t —
- - T N
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0.0 0.0 E [,
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(a) ~ 2 minutes (b) =~ 20 seconds
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Limitations
» lots of branching

» high-dimensional models (many samples)

Future work
» better heuristics for finding a “good” T

» can this be refined into an approximate inference algorithm?



Rigorous Bounds on the Posterior:
posterior(E) € [a, b]

...for a universal PPL with continuous distributions and
conditioning (observe)

Why?
» construct ground truth
» debug approximate inference

How?

1. interval trace semantics
2. interval type system

3. symbolic execution



Backup slides



Trace partitioning heuristics

Option 1: split equidistantly in each dimension

Option 2:
» start with the full interval trace ([—oo, o], . ..)

» pick the next interval ¢; trace or, depending on the input
program, select it with a mix of the following criteria

> high weight wt, ()
> wide value interval val’ (#;)
» large volume vol(tg)

» split that box in half along the dimension that reduces the
width of the interval of the posterior expected value the most

> repeat.



Interval type system

Types:
» unweighted: o ::= [v,0'] | 0 — A
» weighted: A = {[wgw,]}

Selected typing rules:

o> Aiz:o-M: A

Jo— A
Fl—,uf.M.{ 1,1] }

”M:{MG{ }} eev{ o)

LA { [e,f]}
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