Rigorous bounds for posterior inference in
universal probabilistic programming

Raven Beutner' Luke Ong® Fabian Zaiser?
TCISPA Helmholtz Center for Information Security 2University of Oxford

Logic of Probabilistic Programming @ CIRM 2022

A random walk as a probabilistic program

start = sample uniform (0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs(step)
observe 1.1 from normal (distance, 0.1?)
return start

A random walk as a probabilistic program

start = sample uniform (0, 3)
position = start; distance = 0
while position > O0:

step = sample uniform(-1, 1)

position += step

distance += abs(step)
observe 1.1 from normal (distance, 0.17?)
return start

What is p(start | observation)? — Bayesian inference

A random walk as a probabilistic program

start = sample uniform (0, 3)
position = start; distance = 0
while position > O0:

step = sample uniform(-1, 1)

position += step

distance += abs(step)
observe 1.1 from normal (distance, 0.17?)
return start

What is p(start | observation)? — Bayesian inference
» continuous distributions

» unbounded loops
» unbounded number of samples

Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)

@ Q

Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)

@ Q

2. Exact: posterior = X
» symbolic expression

2! soLveR 2 [1PL

Issues with existing methods

12 ™

0.8 LA™
&< [importance samples
0.6 X [HMC samples (Pyro)

A

j \

Issues with existing methods

N
12 B

0.8 L4
S: [importance samples
0.6 ‘ [HMC samples (Pyro)

i

j N

0 1 2 3

> approximate methods: convergence (e.g. for multimodal
models)

> exact methods: restricted models (e.g. no recursion)

Rigorous Bounds on the Posterior:
posterior(E) € [a, b]

Rigorous Bounds on the Posterior:
posterior(E) € [a, b]
...for
» a universal PPL (including branching & recursion)
» with continuous distributions
» and conditioning (observe)

Rigorous Bounds on the Posterior:
posterior(E) € [a, b]
...for
» a universal PPL (including branching & recursion)
» with continuous distributions

» and conditioning (observe)

Why?

» construct ground truth for inference problems
» to debug approximate inference

Rigorous Bounds on the Posterior:
posterior(E) € [a, b]
.. for
» a universal PPL (including branching & recursion)
» with continuous distributions

» and conditioning (observe)

Why?

» construct ground truth for inference problems
» to debug approximate inference

How?

1. interval traces & interval arithmetic (basic idea)
2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

Semantics of a probabilistic program
Let P : R a probabilistic program.
» trace space: T := {J, .y R"

» value function: valp : T — R
» weight function: wtp : T — [0, 00)

Semantics of a probabilistic program
Let P : R a probabilistic program.
» trace space: T := {J, .y R"
» value function: valp : T — R
» weight function: wtp : T — [0, 00)
Unnormalized posterior of an event £
[PI(E) = / wtp(t)dt = “P(start € E A 0bs)”

vall_gl(E)

Semantics of a probabilistic program
Let P : R a probabilistic program.
» trace space: T := {J, .y R"

» value function: valp : T — R

» weight function: wtp : T — [0, 00)
Unnormalized posterior of an event £

[PI(E) = / wtp(t) dt = “P(start € E A obs)”

vall_gl(E)

Bayes’ rule:

1
P(start € £ | obs) = ZIP’(start € ENnobs) where Z := P(obs)

Semantics of a probabilistic program
Let P : R a probabilistic program.
» trace space: T := {J, .y R"

» value function: valp : T — R

» weight function: wtp : T — [0, 00)
Unnormalized posterior of an event £

[PI(E) = / wtp(t) dt = “P(start € E A obs)”

vall_gl(E)

Bayes’ rule:

1
P(start € £ | obs) = ZIP’(start € ENnobs) where Z := P(obs)
Normalized posterior:

posteriorp(E) 1= %HP]](E) where Z := [P](R).

Method 1: Interval traces

standard semantics

traces (0.2,0.8)
T:=U,enR"
value valp: T — R
weight wtp : T — [0, 00)
posterior [P](E)

integral over T

Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics interval semantics
traces (0.2,0.8) ([0.2,0.3],]0.7,0.8])
T:=U,enR" Tr = U, enI"
value valp : T — R valp, : Ty — 1
weight wtp : T — [0, 00) wth : Ty = g o)
posterior [P](E) llowerBdZ (E), upperBd](E)]

integral over T sum over partition 7 C Ty

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position
distance
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.6 [0.5,0.6
distance 0.0 [0.0,0.0
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.6 [0.5,0.6
distance 0.0 [0.0,0.0
trace t (0.6,0.2, —0.8) ([0.5,0.6],[0.1,0.2], [-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.8 [0.6,0.8]
distance 0.2 [0.1,0.2]
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.8 [0.6,0.8]
distance 0.2 [0.1,0.2]
trace t (0.6,0.2,=0.8) ([0.5,0.6],[0.1,0.2],[-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) 1 [1,1]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) ~24 [0.53, 3.99]

return value val(t)

Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace t (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight wt(t) ~ 24 [0.53,3.99]

return value val(t) 0.6 [0.5,0.6]

Bounding the posterior

[P)(I) := /| 0 wtp(t) dt

Bounding the posterior

[P](]) = / ", wip(t)dt = /t wtp(t) - [valp(t) € I) dt

tieT

...if T C Tyis “non-overlapping” and “exhaustive” (covers every
trace)

Bounding the posterior

[P](]) = / ", wip(t)dt = /t wtp(t) - [valp(t) € I) dt

tieT

<) vol(t) - (maxwip(ty)) - [valp(tr) N T # 0]

tieT

...if T C Tyis “non-overlapping” and “exhaustive” (covers every
trace) and where

vol({[a1,b1], ..., [an, bn))) := (b —ay) X -+ X (b, — ap)

Bounding the posterior

[P](I) / IRCIOEEDY /t wp(t) - [valp(t) € I] dt

tieT
<) vol(ty) - (maxwip(ty)) - [valp(tr) N T # 0]
tieT
—: upperBd (1)

... it T C Ty is “non-overlapping” and “exhaustive” (covers every
trace) and where

vol({[a1,b1],. .., [an,bs])) := (by —ay) X -+ X (b, — ay)

Bounding the posterior

> " vol(ty) - (minwtp(t;)) - [vallb(tr) C 1]

tieT
< [PI(]) = / wip(t)dt = 3 [wp(t) - valp(t) € 1)t
vaII_,l(I) teT
<) vol(ty) - (maxwip(ty)) - [valp(tr) N T # 0]
tieT
—: upperBd (1)

. Af T C Ty is “non-overlapping” and “exhaustive” (covers every
trace) and where

vol({[a1,b1],. .., [an,bs])) := (by —ay) X -+ X (b, — ay)

Bounding the posterior

lowerBd 7, (1)
=) _vol(ty) - (minwtp(t;)) - [valp(t;) C 1]
tieT
< [PI(]) = / wip(t)dt = 3 [wp(t) - valp(t) € 1)t
vaII_,l(I) teT
<) vol(ty) - (maxwip(ty)) - [valp(tr) N T # 0]
tieT
—: upperBd (1)

... it T C Ty is “non-overlapping” and “exhaustive” (covers every
trace) and where

vol({[a1,b1],. .., [an,bs])) := (by —ay) X -+ X (b, — ay)

Soundness

lowerBd}, < [P] < upperBd?.

Soundness

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a countable set 7 C Ty s.t.
upperBd’ (1) — e < [P](I) < lowerBdL (1) + €

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.

10

Soundness

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a countable set 7 C Ty s.t.
upperBd’ (1) — e < [P](I) < lowerBdL (1) + €

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.

10

Soundness

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a finite set 7 C Ty s.t.
[P](I) < lowerBd}L(I) + ¢

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.

10

Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

> types keep track of the value and weight interval

ey {[[w”fu]]} means valp(t) € [v, /] and wip(t) € [w, /).

)

» efficient type inference

» uses interval arithmetic & widening to approximate fixpoints

Method 3: Symbolic execution
— optimization for a common special case

Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[1]

Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[PI(D) = > /A da

paths U{VEI}

[1]

Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P](I Z/A da<Zv01AU{V€I} Hmaan

paths U{VEI} paths We=

[1]

Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P](I Z/A da<ZVOIAU{V€I} Hmaan

paths U{VEI} paths WeE

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

Method 3: Symbolic execution
— optimization for a common special case

For each program path,
» «i: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P)(I Z/A da<ZvolAU{V€I} [max.w

paths U{VEI} paths We=

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

> linear optimization & interval arithmetic

Empirical evaluation

Empirical evaluation

0.6

12 -
1.0
08| II

m=m bounds
Il importance samples
I Pyro HMC samples

0.4

02} —

00} lllllllllll.llllll
0 1 2 3

(time: 50 minutes)

Examples that are hard for MCMC

08|
0.6
0.4
02

0.0L

-4 -2 0 2 4

(a) Neal’s funnel (5 seconds)

0.8

0.6

0.4

0.2

0.0

I bounds
Il MCMC samples

(b) Binary Gaussian mixture
model (90 seconds)

Comparison with previous work
Sankaranarayanan et al. (PLDI13)
» bounding probabilities (but no observe)

» ours is usually slower, but often better bounds

Comparison with previous work
Sankaranarayanan et al. (PLDI13)
» bounding probabilities (but no observe)

» ours is usually slower, but often better bounds
PSI solver

» consistency check: benchmarks from the PSI repository
» we can handle unbounded loops, contrary to PSI

I ours - - Il bounded loop
04 . P 08 .- | HEE unbounded
0.3 0.6 -
0.2 04t —
- - T N

01 e 02} = __’*-d
0.0 0.0 E [,

0 5 10 15 20 0 1 2 3

(a) ~ 2 minutes (b) =~ 20 seconds

Limitations
» lots of branching

» high-dimensional models (many samples)

Limitations
» lots of branching

» high-dimensional models (many samples)

Future work
» better heuristics for finding a “good” T

» can this be refined into an approximate inference algorithm?

Rigorous Bounds on the Posterior:
posterior(E) € [a, b]

...for a universal PPL with continuous distributions and
conditioning (observe)

Why?
» construct ground truth
» debug approximate inference

How?

1. interval trace semantics
2. interval type system

3. symbolic execution

Backup slides

Trace partitioning heuristics

Option 1: split equidistantly in each dimension

Option 2:
» start with the full interval trace ([—oo, o], . ..)

» pick the next interval ¢; trace or, depending on the input
program, select it with a mix of the following criteria

> high weight wt, ()
> wide value interval val’ (#;)
» large volume vol(tg)

» split that box in half along the dimension that reduces the
width of the interval of the posterior expected value the most

> repeat.

Interval type system

Types:
» unweighted: o ::= [v,0'] | 0 — A
» weighted: A = {[wgw,]}

Selected typing rules:

o> Aiz:o-M: A

Jo— A
Fl—,uf.M.{ 1,1] }

”M:{MG{ }} eev{ o)

LA { [e,f]}

20

	Appendix
	Appendix

