Rigorous bounds for posterior inference in universal probabilistic programming

Raven Beutner¹ Luke Ong² Fabian Zaiser²

¹CISPA Helmholtz Center for Information Security

²University of Oxford

Logic of Probabilistic Programming @ CIRM 2022

A random walk as a probabilistic program

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)

observe 1.1 from normal(distance, 0.1²)
return start
```

A random walk as a probabilistic program

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)

observe 1.1 from normal(distance, 0.1²)
return start
```

What is $p(start \mid observation)$? \rightarrow Bayesian inference

A random walk as a probabilistic program

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)

observe 1.1 from normal(distance, 0.1²)
return start
```

What is $p(start \mid observation)$? \rightarrow Bayesian inference

- continuous distributions
- unbounded loops
- unbounded number of samples

Existing inference methods

- **1. Approximate:** posterior $\approx X$
- Monte Carlo (particle filter, MCMC)
- or optimization-based (variational inference)

Existing inference methods

- **1. Approximate:** posterior $\approx X$
- Monte Carlo (particle filter, MCMC)
- or optimization-based (variational inference)

- **2. Exact:** posterior = X
- symbolic expression

Issues with existing methods

Issues with existing methods

- approximate methods: convergence (e.g. for multimodal models)
- exact methods: restricted models (e.g. no recursion)

Rigorous Bounds on the Posterior: posterior(E) $\in [a,b]$

Rigorous Bounds on the Posterior: posterior(E) $\in [a, b]$

... for

- a universal PPL (including branching & recursion)
- with continuous distributions
- and conditioning (observe)

Rigorous Bounds on the Posterior:

$$\mathsf{posterior}(E) \in [a,b]$$

- ... for
- a universal PPL (including branching & recursion)
- with continuous distributions
- and conditioning (observe)

Why?

- construct ground truth for inference problems
- to debug approximate inference

Rigorous Bounds on the Posterior:

$$\mathsf{posterior}(E) \in [a,b]$$

- . . . for
- a universal PPL (including branching & recursion)
- with continuous distributions
- and conditioning (observe)

Why?

- construct ground truth for inference problems
- to debug approximate inference

How?

- 1. interval traces & interval arithmetic (basic idea)
- 2. interval type system (overapproximation)
- 3. symbolic execution (optimization of special case)

Let $P : \mathbb{R}$ a probabilistic program.

- ightharpoonup trace space: $\mathbb{T}:=\bigcup_{n\in\mathbb{N}}\mathbb{R}^n$
- ▶ value function: $val_P : \mathbb{T} \to \mathbb{R}$
- weight function: $\operatorname{wt}_P : \mathbb{T} \to [0, \infty)$

Let $P : \mathbb{R}$ a probabilistic program.

- trace space: $\mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{R}^n$
- ▶ value function: $val_P : \mathbb{T} \to \mathbb{R}$
- weight function: $\operatorname{wt}_P: \mathbb{T} \to [0, \infty)$

Unnormalized posterior of an event *E*:

$$\llbracket P
rbracket{D}(E) := \int_{\mathsf{val}_P^{-1}(E)} \mathsf{wt}_P(oldsymbol{t}) \, \mathrm{d} oldsymbol{t} = \text{``P(start} \in E \wedge \mathsf{obs)''}$$

Let $P : \mathbb{R}$ a probabilistic program.

- ▶ trace space: $\mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{R}^n$
- ightharpoonup value function: $\operatorname{val}_P:\mathbb{T}\to\mathbb{R}$
- weight function: $\operatorname{wt}_P: \mathbb{T} \to [0, \infty)$

Unnormalized posterior of an event *E*:

$$\llbracket P
rbracket{D}(E) := \int_{\mathsf{val}_P^{-1}(E)} \mathsf{wt}_P(oldsymbol{t}) \, \mathrm{d} oldsymbol{t} = \text{``P(start} \in E \wedge \mathsf{obs)''}$$

Bayes' rule:

$$\mathbb{P}(\mathtt{start} \in E \mid \mathsf{obs}) = \frac{1}{Z} \mathbb{P}(\mathtt{start} \in E \land \mathsf{obs}) \quad \mathsf{where} \ Z := \mathbb{P}(\mathsf{obs})$$

Let $P : \mathbb{R}$ a probabilistic program.

- trace space: $\mathbb{T} := \bigcup_{n \in \mathbb{N}} \mathbb{R}^n$
- ▶ value function: $val_P : \mathbb{T} \to \mathbb{R}$
- weight function: $\operatorname{wt}_P: \mathbb{T} \to [0, \infty)$

Unnormalized posterior of an event *E*:

$$\llbracket P \rrbracket(E) := \int_{\mathsf{val}_P^{-1}(E)} \mathsf{wt}_P(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \text{``P(start} \in E \wedge \mathsf{obs)''}$$

Bayes' rule:

$$\mathbb{P}(\mathtt{start} \in E \mid \mathsf{obs}) = \frac{1}{Z} \mathbb{P}(\mathtt{start} \in E \land \mathsf{obs}) \quad \mathsf{where} \ Z := \mathbb{P}(\mathsf{obs})$$

Normalized posterior:

$$\operatorname{posterior}_P(E) := \frac{1}{Z} \llbracket P \rrbracket(E) \qquad \text{where } Z := \llbracket P \rrbracket(\mathbb{R}).$$

Method 1: Interval traces

	standard semantics
traces	$\langle 0.2, 0.8 \rangle$
	$\mathbb{T}:=igcup_{n\in\mathbb{N}}\mathbb{R}^n$
value	$val_P: \mathbb{T} \to \mathbb{R}$
weight	$wt_P:\mathbb{T} o [0,\infty)$
posterior	$\llbracket P \rrbracket(E)$
	integral over \mathbb{T}

Method 1: Interval traces

Idea: summarize traces using intervals

	standard semantics	interval semantics
traces	$\langle 0.2, 0.8 \rangle$	$\langle [0.2, 0.3], [0.7, 0.8] \rangle$
	$\mathbb{T} := igcup_{n \in \mathbb{N}} \mathbb{R}^n$	$\mathbb{T}_{\mathbb{I}} \vcentcolon= igcup_{n \in \mathbb{N}} \mathbb{I}^n$
value	$val_P: \mathbb{T} \to \mathbb{R}$	$val_P^\mathbb{I}: \mathbb{T}_\mathbb{I} \to \mathbb{I}$
weight	$wt_P:\mathbb{T} o [0,\infty)$	$wt_P^{\mathbb{I}}: \mathbb{T}_{\mathbb{I}} o \mathbb{I}_{[0,\infty)}$
posterior	$[\![P]\!](E)$	$[lowerBd_P^{\mathcal{T}}(E), upperBd_P^{\mathcal{T}}(E)]$
	integral over $\ensuremath{\mathbb{T}}$	sum over partition $\mathcal{T}\subset\mathbb{T}_{\mathbb{I}}$

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start
```

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position		
distance		
trace t	$\langle 0.6, 0.2, -0.8 \rangle$	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $wt(oldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.6	[0.5, 0.6]
distance	0.0	[0.0, 0.0]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $wt(oldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.6	[0.5, 0.6]
distance	0.0	[0.0, 0.0]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $\operatorname{wt}(\boldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.8	[0.6, 0.8]
distance	0.2	[0.1, 0.2]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $\operatorname{wt}(\boldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.8	[0.6, 0.8]
distance	0.2	[0.1, 0.2]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
$\mathbf{weight} \ wt(\boldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
    position += step
    distance += abs(step)
observe 1.1 from normal(distance, 0.1²)
return start.
```

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.0	[-0.3, 0.0]
distance	1.0	[0.9, 1.1]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $wt(oldsymbol{t})$	1	[1,1]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
   step = sample uniform(-1, 1)
   position += step
   distance += abs(step)
observe 1.1 from normal(distance, 0.1<sup>2</sup>)
```

return start.

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.0	[-0.3, 0.0]
distance	1.0	[0.9, 1.1]
trace t	(0.6, 0.2, -0.8)	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
weight $wt(t)$	≈ 2.4	[0.53, 3.99]
return value $val(t)$		

```
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:
    step = sample uniform(-1, 1)
   position += step
   distance += abs(step)
observe 1.1 from normal (distance, 0.1<sup>2</sup>)
```

return start

	standard	interval semantics
start	0.6	[0.5, 0.6]
position	0.0	[-0.3, 0.0]
distance	1.0	[0.9, 1.1]
trace t	$\langle 0.6, 0.2, -0.8 \rangle$	$\langle [0.5, 0.6], [0.1, 0.2], [-0.9, -0.8] \rangle$
$\mathbf{weight} \ wt(\boldsymbol{t})$	≈ 2.4	[0.53, 3.99]
return value $val(t)$	0.6	[0.5, 0.6]

$$\llbracket P
rbracket{I}(I) := \int_{\mathsf{val}_P^{-1}(I)} \mathsf{wt}_P(oldsymbol{t}) \, \mathrm{d}oldsymbol{t}$$

$$[\![P]\!](I) := \int_{\mathsf{val}_P^{-1}(I)} \mathsf{wt}_P(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \int_{\boldsymbol{t}_{\mathbb{I}}} \mathsf{wt}_P(\boldsymbol{t}) \cdot [\mathsf{val}_P(\boldsymbol{t}) \in I] \, \mathrm{d}\boldsymbol{t}$$

 \dots if $\mathcal{T}\subseteq\mathbb{T}_{\mathbb{I}}$ is "non-overlapping" and "exhaustive" (covers every trace)

$$\begin{split} & [\![P]\!](I) := \int_{\mathsf{val}_P^{-1}(I)} \mathsf{wt}_P(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \int_{\boldsymbol{t}_{\mathbb{I}}} \mathsf{wt}_P(\boldsymbol{t}) \cdot [\mathsf{val}_P(\boldsymbol{t}) \in I] \, \mathrm{d}\boldsymbol{t} \\ & \leq \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \underbrace{\mathsf{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\max \mathsf{wt}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\mathsf{val}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \cap I \neq \emptyset]} \end{split}$$

 \dots if $\mathcal{T}\subseteq\mathbb{T}_{\mathbb{I}}$ is "non-overlapping" and "exhaustive" (covers every trace) and where

$$\operatorname{vol}(\langle [a_1, b_1], \dots, [a_n, b_n] \rangle) := (b_1 - a_1) \times \dots \times (b_n - a_n)$$

$$\begin{split} & \llbracket P \rrbracket(I) \coloneqq \int_{\mathsf{val}_P^{-1}(I)} \mathsf{wt}_P(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \int_{\boldsymbol{t}_{\mathbb{I}}} \mathsf{wt}_P(\boldsymbol{t}) \cdot [\mathsf{val}_P(\boldsymbol{t}) \in I] \, \mathrm{d}\boldsymbol{t} \\ & \leq \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \mathsf{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\max \mathsf{wt}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\mathsf{val}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \cap I \neq \emptyset] \\ = : \mathsf{upperBd}_P^{\mathcal{T}}(I) \end{split}$$

 \dots if $\mathcal{T}\subseteq\mathbb{T}_{\mathbb{I}}$ is "non-overlapping" and "exhaustive" (covers every trace) and where

$$\operatorname{vol}(\langle [a_1, b_1], \dots, [a_n, b_n] \rangle) := (b_1 - a_1) \times \dots \times (b_n - a_n)$$

$$\begin{split} &\sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \operatorname{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\min \operatorname{wt}_{P}^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\operatorname{val}_{P}^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \subseteq I] \\ &\leq \llbracket P \rrbracket(I) := \int_{\operatorname{val}_{P}^{-1}(I)} \operatorname{wt}_{P}(\boldsymbol{t}) \operatorname{d} \boldsymbol{t} = \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \int_{\boldsymbol{t}_{\mathbb{I}}} \operatorname{wt}_{P}(\boldsymbol{t}) \cdot [\operatorname{val}_{P}(\boldsymbol{t}) \in I] \operatorname{d} \boldsymbol{t} \\ &\leq \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \operatorname{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\max \operatorname{wt}_{P}^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\operatorname{val}_{P}^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \cap I \neq \emptyset] \\ =: \operatorname{upperBd}_{P}^{\mathcal{T}}(I) \end{split}$$

 \dots if $\mathcal{T}\subseteq\mathbb{T}_{\mathbb{I}}$ is "non-overlapping" and "exhaustive" (covers every trace) and where

$$\operatorname{vol}(\langle [a_1, b_1], \dots, [a_n, b_n] \rangle) := (b_1 - a_1) \times \dots \times (b_n - a_n)$$

$$\begin{split} &\mathsf{lowerBd}_P^{\mathcal{T}}(I) \\ &:= \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \mathrm{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\min \mathsf{wt}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\mathsf{val}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \subseteq I] \\ &\leq \llbracket P \rrbracket(I) := \int_{\mathsf{val}_P^{-1}(I)} \mathsf{wt}_P(\boldsymbol{t}) \, \mathrm{d}\boldsymbol{t} = \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \int_{\boldsymbol{t}_{\mathbb{I}}} \mathsf{wt}_P(\boldsymbol{t}) \cdot [\mathsf{val}_P(\boldsymbol{t}) \in I] \, \mathrm{d}\boldsymbol{t} \\ &\leq \sum_{\boldsymbol{t}_{\mathbb{I}} \in \mathcal{T}} \mathrm{vol}(\boldsymbol{t}_{\mathbb{I}}) \cdot (\max \mathsf{wt}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}})) \cdot [\mathsf{val}_P^{\mathbb{I}}(\boldsymbol{t}_{\mathbb{I}}) \cap I \neq \emptyset] \\ &=: \mathsf{upperBd}_P^{\mathcal{T}}(I) \end{split}$$

 \dots if $\mathcal{T}\subseteq\mathbb{T}_{\mathbb{I}}$ is "non-overlapping" and "exhaustive" (covers every trace) and where

$$\operatorname{vol}(\langle [a_1, b_1], \dots, [a_n, b_n] \rangle) := (b_1 - a_1) \times \dots \times (b_n - a_n)$$

Soundness

 $\mathsf{lowerBd}_P^{\mathcal{T}} \leq \llbracket P \rrbracket \leq \mathsf{upperBd}_P^{\mathcal{T}}.$

Soundness

$$\mathsf{lowerBd}_P^{\mathcal{T}} \leq \llbracket P \rrbracket \leq \mathsf{upperBd}_P^{\mathcal{T}}.$$

Completeness

For all intervals I and $\epsilon > 0$, there is a countable set $\mathcal{T} \subseteq \mathbb{T}_{\mathbb{I}}$ s.t.

$$\mathsf{upperBd}_P^{\mathcal{T}}(I) - \epsilon \leq [\![P]\!](I) \leq \mathsf{lowerBd}_P^{\mathcal{T}}(I) + \epsilon$$

under the assumptions:

- the primitive functions are continuous*
- each sampled value is used at most once in each condition, observe statement, and in the return value.

Soundness

$$\mathsf{lowerBd}_P^{\mathcal{T}} \leq \llbracket P \rrbracket \leq \mathsf{upperBd}_P^{\mathcal{T}}.$$

Completeness

For all intervals I and $\epsilon > 0$, there is a countable set $\mathcal{T} \subseteq \mathbb{T}_{\mathbb{I}}$ s.t.

$$\mathsf{upperBd}_P^{\mathcal{T}}(I) - \epsilon \leq [\![P]\!](I) \leq \mathsf{lowerBd}_P^{\mathcal{T}}(I) + \epsilon$$

under the assumptions:

- the primitive functions are continuous*
- each sampled value is used at most once in each condition, observe statement, and in the return value.

Soundness

$$\mathsf{lowerBd}_P^{\mathcal{T}} \leq \llbracket P \rrbracket \leq \mathsf{upperBd}_P^{\mathcal{T}}.$$

Completeness

For all intervals I and $\epsilon > 0$, there is a finite set $\mathcal{T} \subseteq \mathbb{T}_{\mathbb{I}}$ s.t.

$$[\![P]\!](I) \leq \mathsf{lowerBd}_P^{\mathcal{T}}(I) + \epsilon$$

under the assumptions:

- the primitive functions are continuous*
- each sampled value is used at most once in each condition, observe statement, and in the return value.

Method 2: Interval type system

 \rightarrow to overapproximate recursion and conditionals (not resolvable by intervals)

Method 2: Interval type system

 \rightarrow to overapproximate recursion and conditionals (not resolvable by intervals)

- types keep track of the value and weight interval
- $ightharpoonup \vdash P: \left\{egin{align*} [v,v'] \\ [w,w'] \end{smallmatrix}
 ight\} \mathsf{means} \ \mathsf{val}_P(oldsymbol{t}) \in [v,v'] \ \mathsf{and} \ \mathsf{wt}_P(oldsymbol{t}) \in [w,w'].$
- efficient type inference
- uses interval arithmetic & widening to approximate fixpoints

 \rightarrow optimization for a common special case

ightarrow optimization for a common special case

For each program path,

- ightharpoonup α_k : the k-th sample
- \triangleright \mathcal{V} : result value, e.g. $\alpha_1 + 2\alpha_2$
- $ightharpoonup \Delta$: guards, e.g. $\{\alpha_1 \leq 0, \alpha_1 + \alpha_2 > 1\}$
- ightharpoonup Ξ : weights, e.g. $\{\mathrm{pdf}_{\mathrm{Normal}(0,1)}(\alpha_1-\alpha_2),\mathrm{pdf}_{\mathrm{Normal}(1,2)}(\alpha_3)\}$

ightarrow optimization for a common special case

For each program path,

- ightharpoonup α_k : the k-th sample
- \triangleright \mathcal{V} : result value, e.g. $\alpha_1 + 2\alpha_2$
- $ightharpoonup \Delta$: guards, e.g. $\{\alpha_1 \leq 0, \alpha_1 + \alpha_2 > 1\}$
- ightharpoonup Ξ : weights, e.g. $\{\mathrm{pdf}_{\mathrm{Normal}(0,1)}(\alpha_1-\alpha_2),\mathrm{pdf}_{\mathrm{Normal}(1,2)}(\alpha_3)\}$

$$[\![P]\!](I) = \sum_{\mathsf{paths}} \int_{\Delta \cup \{\mathcal{V} \in I\}} \left(\prod \Xi \right) \mathrm{d}\alpha$$

ightarrow optimization for a common special case

For each program path,

- ightharpoonup α_k : the k-th sample
- \triangleright \mathcal{V} : result value, e.g. $\alpha_1 + 2\alpha_2$
- $ightharpoonup \Delta$: guards, e.g. $\{\alpha_1 \leq 0, \alpha_1 + \alpha_2 > 1\}$
- ightharpoonup Ξ : weights, e.g. $\{\mathrm{pdf}_{\mathrm{Normal}(0,1)}(\alpha_1-\alpha_2),\mathrm{pdf}_{\mathrm{Normal}(1,2)}(\alpha_3)\}$

$$[\![P]\!](I) = \sum_{\mathsf{paths}} \int_{\Delta \cup \{\mathcal{V} \in I\}} \left(\prod \Xi \right) \mathrm{d}\alpha \leq \sum_{\mathsf{paths}} \operatorname{vol}(\Delta \cup \{\mathcal{V} \in I\}) \prod_{\mathcal{W} \in \Xi} \max_{\alpha} \mathcal{W}$$

ightarrow optimization for a common special case

For each program path,

- ightharpoonup α_k : the k-th sample
- \triangleright \mathcal{V} : result value, e.g. $\alpha_1 + 2\alpha_2$
- $ightharpoonup \Delta$: guards, e.g. $\{\alpha_1 \leq 0, \alpha_1 + \alpha_2 > 1\}$
- ightharpoonup Ξ : weights, e.g. $\{\mathrm{pdf}_{\mathrm{Normal}(0,1)}(\alpha_1-\alpha_2),\mathrm{pdf}_{\mathrm{Normal}(1,2)}(\alpha_3)\}$

$$[\![P]\!](I) = \sum_{\mathsf{paths}} \int_{\Delta \cup \{\mathcal{V} \in I\}} \left(\prod \Xi \right) \mathrm{d}\alpha \leq \sum_{\mathsf{paths}} \underbrace{\mathrm{vol}(\Delta \cup \{\mathcal{V} \in I\})}_{\mathcal{W} \in \Xi} \max_{\alpha} \mathcal{W}$$

If Δ and \mathcal{V} are affine then use

▶ polytope volume computation (→ Vinci tool)

ightarrow optimization for a common special case

For each program path,

- ightharpoonup α_k : the k-th sample
- \triangleright \mathcal{V} : result value, e.g. $\alpha_1 + 2\alpha_2$
- $ightharpoonup \Delta$: guards, e.g. $\{\alpha_1 \leq 0, \alpha_1 + \alpha_2 > 1\}$
- ightharpoonup Ξ : weights, e.g. $\{\mathrm{pdf}_{\mathrm{Normal}(0,1)}(\alpha_1-\alpha_2),\mathrm{pdf}_{\mathrm{Normal}(1,2)}(\alpha_3)\}$

$$[\![P]\!](I) = \sum_{\mathsf{paths}} \int_{\Delta \cup \{\mathcal{V} \in I\}} \left(\prod \Xi \right) \mathrm{d}\alpha \leq \sum_{\mathsf{paths}} \operatorname{vol}(\Delta \cup \{\mathcal{V} \in I\}) \prod_{\mathcal{W} \in \Xi} \max_{\alpha} \mathcal{W}$$

If Δ and \mathcal{V} are affine then use

- ▶ polytope volume computation (→ Vinci tool)
- linear optimization & interval arithmetic

Empirical evaluation

Empirical evaluation

(time: 50 minutes)

Examples that are hard for MCMC

(a) Neal's funnel (5 seconds)

(b) Binary Gaussian mixture model (90 seconds)

Comparison with previous work Sankaranarayanan et al. (PLDI13)

- bounding probabilities (but no observe)
- ours is usually slower, but often better bounds

Comparison with previous work

Sankaranarayanan et al. (PLDI13)

- bounding probabilities (but no observe)
- ours is usually slower, but often better bounds

PSI solver

- consistency check: benchmarks from the PSI repository
- we can handle unbounded loops, contrary to PSI

Limitations

- lots of branching
- high-dimensional models (many samples)

Limitations

- lots of branching
- high-dimensional models (many samples)

Future work

- ightharpoonup better heuristics for finding a "good" ${\cal T}$
- can this be refined into an approximate inference algorithm?

Rigorous Bounds on the Posterior: posterior(E) \in [a, b]

... for a universal PPL with continuous distributions and conditioning (observe)

Why?

- construct ground truth
- debug approximate inference

How?

- 1. interval trace semantics
- interval type system
- 3. symbolic execution

Backup slides

Trace partitioning heuristics

Option 1: split equidistantly in each dimension

Option 2:

- start with the full interval trace $\langle [-\infty, \infty], \dots \rangle$
- ightharpoonup pick the next interval $t_{\mathbb{I}}$ trace or, depending on the input program, select it with a mix of the following criteria
 - lacksquare high weight $\operatorname{wt}_P^{\mathbb{I}}(oldsymbol{t}_{\mathbb{I}})$
 - lacksquare wide value interval $\mathsf{val}_P^\mathbb{I}(oldsymbol{t}_\mathbb{I})$
 - ► large volume $vol(t_{\mathbb{I}})$
- split that box in half along the dimension that reduces the width of the interval of the posterior expected value the most
- repeat.

Interval type system

Types:

- ▶ unweighted: $\sigma ::= [v, v'] \mid \sigma \to \mathcal{A}$
- weighted: $\mathcal{A} ::= \left\{ \begin{matrix} \sigma \\ [w,w'] \end{matrix} \right\}$

Selected typing rules:

$$\frac{\Gamma; \varphi : \sigma \to \mathcal{A}; x : \sigma \vdash M : \mathcal{A}}{\Gamma \vdash \mu_x^{\varphi}.M : \begin{Bmatrix} \sigma \to \mathcal{A} \\ [1,1] \end{Bmatrix}}$$

$$\Gamma \vdash M : \begin{Bmatrix} \sigma_1 \to \begin{Bmatrix} \sigma_2 \\ [e,f] \end{Bmatrix} \qquad \Gamma \vdash N : \begin{Bmatrix} \sigma_1 \\ [c,d] \end{Bmatrix}$$

$$\Gamma \vdash MN : \begin{Bmatrix} \sigma_1 \\ [e,f] \end{Bmatrix}$$

$$\Gamma \vdash MN : \begin{Bmatrix} \sigma_1 \\ [e,f] \end{Bmatrix}$$