Guaranteed Bounds for Posterior
Inference in Universal Probabilistic
Programming

Raven Beutner' Luke Ong® Fabian Zaiser?
TCISPA Helmholtz Center for Information Security 2University of Oxford

PLDI 2022



Our work

» Probabilistic programming: Bayesian statistical models as
programs

» Vision: Bayesian inference algorithms for any program



Our work

» Probabilistic programming: Bayesian statistical models as
programs

» Vision: Bayesian inference algorithms for any program

Problem: existing inference algorithms
X have few guarantees on the result or

X only work on a restricted class of models



Our work

» Probabilistic programming: Bayesian statistical models as
programs

» Vision: Bayesian inference algorithms for any program

Problem: existing inference algorithms
X have few guarantees on the result or

X only work on a restricted class of models

Our contribution:
guaranteed bounds on the posterior -

v/ can find errors in inference results

v/ applicable to a broad ,
class of probabilistic programs

probability

£

1
? !




Example model

o X

0 3

start = sample uniform(0, 3)



Example model

————

Sauc” -
0 3
start = sample uniform (0, 3)
position = start; distance = 0
while position > O:
step = sample uniform(-1, 1)

position += step
distance += abs(step)



Example model

start = sample uniform (0, 3)

position = start; distance = 0

while position > O:
step = sample uniform (-1,
position += step
distance += abs(step)
observe 1.1 from normal (distance,

1)

0.1)



Example model

start = sample uniform (0, 3)
position = start; distance = 0
while position > O:

step = sample uniform(-1, 1)

position += step

distance += abs(step)
observe 1.1 from normal (distance,
return start

Posterior distribution p(start | observation)?

0.

1)



Existing inference methods



Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)

@ ‘l'Q

Stan Pyro Anglican



Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)

@ ‘l'Q

Stan Pyro Anglican

2. Exact: posterior = X
» symbolic expression

">l soLver 2[1PL

SPPL



Issues with existing methods
» exact methods: restricted models

» approximate methods: implicit assumptions, slow
convergence



Issues with existing methods
» exact methods: restricted models

» approximate methods: implicit assumptions, slow
convergence

015

o
o
S
|
|

= [—Jimportance samples
| |- [_]HMC samples (Pyro)

probability

0.05

0.00

o}t

1 2 3
start position



Guaranteed Bounds on the Posterior:
posterior(F) € |a, b]



Guaranteed Bounds on the Posterior:
posterior(F) € |a, b]

...for a universal PPL with continuous distributions and
observe.



Guaranteed Bounds on the Posterior:
posterior(F) € |a, b]

...for a universal PPL with continuous distributions and
observe.

Why?
» construct ground truth for inference problems
» to debug approximate inference



Guaranteed Bounds on the Posterior:
posterior(F) € |a, b]

...for a universal PPL with continuous distributions and
observe.

Why?

» construct ground truth for inference problems

» to debug approximate inference

How?

1. interval traces & interval arithmetic (basic idea)
2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)



Guaranteed Bounds on the Posterior:
posterior(F) € |a, b]

...for a universal PPL with continuous distributions and
observe.

Why?

» construct ground truth for inference problems

» to debug approximate inference

How?

1. interval traces & interval arithmetic (basic idea)
2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)



Semantics of a probabilistic program

» trace s records sampled values, e.g. (0.23,0.79)
» result value resval(s) for trace s
> weight weight(s): product of likelihoods of observations



Semantics of a probabilistic program

» trace s records sampled values, e.g. (0.23,0.79)
» result value resval(s) for trace s
> weight weight(s): product of likelihoods of observations

Unnormalized posterior of £ (joint probability):

[PI(E) = / weight(s) ds = “P(start € F,0bs)”

{s|resval(s)eE}



Semantics of a probabilistic program

» trace s records sampled values, e.g. (0.23,0.79)
» result value resval(s) for trace s
> weight weight(s): product of likelihoods of observations

Unnormalized posterior of £ (joint probability):

[PI(E) = / weight(s) ds = “P(start € F,0bs)”

{s|resval(s)eE}

Bayes’ rule ~ normalized posterior (conditional probability):

P(start € I/,0bs)  [P](E)

P(start € F | obs) = P(obs) = [PI®)




Semantics of a probabilistic program

» trace s records sampled values, e.g. (0.23,0.79)
» result value resval(s) for trace s
> weight weight(s): product of likelihoods of observations

Unnormalized posterior of £ (joint probability):

[PI(E) = / weight(s) ds = “P(start € F,0bs)”

{s|resval(s)eE}

Bayes’ rule ~ normalized posterior (conditional probability):

P(start € I/,0bs)  [P](E)

P(start € F | obs) = P(obs) =~ [AI®)




Interval traces

Want to bound [P](E weight(s) ds.

f{s|resva|(s)eE}



Interval traces

Want to bound [P](E weight(s) ds.

f{s|resva|(s)€E}

Idea: Riemann sums



Interval traces
Want to bound [P](E) = [, eevai(s)c i} Weight(s) ds.
Idea: Riemann sums

Cover {s | resval(s) € E} with interval traces T
» e.g. ([0.1,0.3],[0.7,1]) contains (0.2,0.9)



Interval traces

Want to bound [P](E) = [, eevai(s)c i} Weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) € E} with interval traces T
» e.g. ([0.1,0.3],[0.7,1]) contains (0.2,0.9)

[P](F) < Z max weight(t)) vol(t)

teT



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start



Interval trace semantics

start = sample uniform(0, 3)

position = start; distance = 0

while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)

observe 1.1 from normal (distance, 0.12)

return start

standard interval semantics
start
position
distance
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position
distance
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.6 [0.5,0.6]
distance 0.0 [0.0,0.0]
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.6 [0.5,0.6]
distance 0.0 [0.0,0.0]
trace s (0.6,0.2, —0.8) ([0.5,0.6],[0.1,0.2], [-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.8 [0.6,0.8]
distance 0.2 [0.1,0.2]
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.8 [0.6,0.8]
distance 0.2 [0.1,0.2]
trace s (0.6,0.2,=0.8) ([0.5,0.6],[0.1,0.2],[-0.9, —0.8])
weight weight(s) 1 [1,1]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > 0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.1%)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
1]

weight weight(s) 1 1,
return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) ~ 2.4 [0.53,3.99]

return value resval(s)



Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5,0.6]
position 0.0 [—0.3,0.0]
distance 1.0 [0.9,1.1]
trace s (0.6,0.2, —0.8) ([0.5,0.6], [0.1,0.2], [-0.9, —0.8])
weight weight(s) ~ 2.4 [0.53,3.99]

return value resval(s) 0.6 [0.5,0.6]



Theoretical results

Soundness

For a non-overlapping and exhaustive set of interval traces 7:

lowerBd}, < [P] < upperBd?.



Theoretical results

Soundness
For a non-overlapping and exhaustive set of interval traces 7:

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a countable set 7 of
interval traces (non-overlapping and exhaustive) s.t.

upperBdL(I) — e < [P](I) < lowerBdL(I) + ¢
under mild assumptions about the program P.

10



Empirical evaluation
» Implementation: GuBPI (gubpi-tool.github.io)


https://gubpi-tool.github.io/

Empirical evaluation
» Implementation: GuBPI (gubpi-tool.github.io)

Pedestrian example:

015 |
> - g
o ||
S 010 L M [Jimportance samples
S | | [_1HMC samples (Pyro)
Q |
—
Q- et
0.05
0.00 [} . " /
0 1 2 3

start position


https://gubpi-tool.github.io/

Empirical evaluation
» Implementation: GuBPI (gubpi-tool.github.io)

Pedestrian example:

015
oy
£ 010 ours
'r% importance samples
o HMC samples (Pyro)
o
o

0.05

- B
0.00 |, .-E:EJU--------,

0 1 2 3
start position


https://gubpi-tool.github.io/

Examples that are hard for MCMC

-
121 .ours .
HMC samples 08 -

probability
&
probability

00 | sm—m—

ours
HMC samples

ul } 'g J i J i
l -;' ._ -. |
00

2 2

-4 -2 4 -4 -2

0 0
result value result value

Neal’s funnel Mixture model



Comparison with previous work
Sankaranarayanan et al. (PLDI2013)
» bounding probabilities (but no observe)

» ours is usually slower, but often finds tighter bounds



Comparison with previous work
Sankaranarayanan et al. (PLDI2013)
» bounding probabilities (but no observe)

» ours is usually slower, but often finds tighter bounds
PSI solver (CAV2016)

» consistency check: benchmarks from the PSI repository
» we can handle unbounded loops, contrary to PSI

probability
o S
¥ &

o
e

o
=}
T

ours (unbounded version)

PSI (bounded version)

o
=

o
o

probability

o
N}

o
=
T

- = ours (unbounded version)
PSI (bounded version)
-

=3
o

10
result value

20

result value



Also in the paper

> Interval type system: approximates unbounded loops and
recursion soundly

» Symbolic execution & linear programming: optimization
for linear guards

» Comparison with statistical validation methods:
simulation-based calibration



Also in the paper

> Interval type system: approximates unbounded loops and
recursion soundly

» Symbolic execution & linear programming: optimization
for linear guards

» Comparison with statistical validation methods:
simulation-based calibration

Limitations
» lots of branching

» high-dimensional models (many samples)



Guaranteed Bounds for Posterior Inference in
Universal Probabilistic Programming

Raven Beutner Luke Ong Fabian Zaiser

...are a middle ground between approximate and exact:
» guaranteed correct (vs. approximate inference)
» supports many language features (vs. exact inference)

Theory: soundness & completeness

Practice:

» detect issues with inference results z |

» competitive on existing benchmarks ‘Eﬂ imes)
» guaranteed results for programs L J?&mm

that other tools cannot handle 0 " tart positon



Backup slides



Trace partitioning heuristics

Option 1: split equidistantly in each dimension

Option 2:
» start with the full interval trace ([—oo, o], . ..)

» pick the next interval t trace or, depending on the input
program, select it with a mix of the following criteria

> high weight weight!(t)
> wide value interval resval'(t)
» large volume vol(t)

» split that box in half along the dimension that reduces the
width of the interval of the posterior expected value the most

> repeat.



Method 1: Interval traces

standard semantics

traces s =(0.2,0.8)
value resval(s) € R
weight weight(s) € [0, c0)
posterior [P](E)

integral over traces s



Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics interval semantics
traces s =(0.2,0.8) t = ([0.2,0.3],[0.7,0.8])
value resval(s) € R resval'(t) € 1
weight weight(s) € [0, 00) weight'(t) € Ijp o)
posterior [P](E) llowerBd](E), upperBdL(E)]

integral over traces s sum over interval traces ¢



Bounding the posterior

[P](I) = / weight(s) ds
{s|resval(s)el}



Bounding the posterior

[P](I) = / weight(s) ds
{s|resval(s)el}

...if T is a set of interval traces that is
“exhaustive” (covers every trace)



Bounding the posterior

[P](I) = / weight(s) ds
{s|resval(s)el}

Z vol(t) - (max weight'(t))
teT
resvall (£)NI#£0

IN

...if T is a set of interval traces that is
“exhaustive” (covers every trace) and where

vol({[a1,b1], ..., [an, bn])) == (by —aq) X -+ x (b, —

an)



Bounding the posterior

[P](I) = / weight(s) ds
{s|resval(s)el}

< Z vol(t) - (max weight'(¢))
teT
resvall (£)NI#£0

—: upperBd7 (1)

...if T is a set of interval traces that is
“exhaustive” (covers every trace) and where

vol({[a1,b1], ..., [an, bn])) := (b —aq) X -+ X (b, — ay)



Bounding the posterior

> vol(t) - (min weight'(t))
teT
resvall(¢)C1

< [P]() ::/ weight(s) ds
{s|resval(s)el}

Z vol(t) - (max weight'(¢))
teT
resvall (£)NI#£0

—: upperBd7 (1)

...if T is a set of interval traces that is “non-overlapping” and
“exhaustive” (covers every trace) and where

vol({[a1,b1], ..., [an, bn])) := (b —aq) X -+ X (b, — ay)

IN



Bounding the posterior

lowerBd7, (1)
=) vol(t) - (minweight'(t))

teT
resvall(¢)C1

< [P]() ::/ weight(s) ds
{s|resval(s)el}

Z vol(t) - (max weight'(¢))
teT
resvall (£)NI#£0

—: upperBd7 (1)

...if T is a set of interval traces that is “non-overlapping” and
“exhaustive” (covers every trace) and where

vol({[a1,b1], ..., [an, bn])) := (b —aq) X -+ X (b, — ay)

IN



Theoretical results

Soundness

lowerBd], < [P] < upperBd?.

20



Theoretical results
Soundness

lowerBd7, < [P] < upperBdF.

Completeness

For all intervals I and € > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBd’ (1) — e < [P](I) < lowerBdL (1) + €

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.



Theoretical results
Soundness

lowerBd7, < [P] < upperBdF.

Completeness

For all intervals I and € > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBd’ (1) — e < [P](I) < lowerBdL (1) + €

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.



Theoretical results

Soundness

lowerBd7, < [P] < upperBdF.

Completeness

For all intervals 7 and ¢ > 0, thereisa finite set 7 of
interval traces (non-overlapping and exhaustive) s.t.

[P](I) < lowerBd}(I) + ¢

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.



Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

21



Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

> types keep track of the value and weight interval

[0, V']

> P { ;1 ¢ means resval(s) € [v,v'] and
[w, w']
weight(s) € [w, w'].
» efficient type inference
» uses interval arithmetic & widening to approximate fixpoints

21



Interval type system

Types:
» unweighted: o ::= [v,0'] | 0 — A
» weighted: A = {[wgw,]}

Selected typing rules:

o= Aiz:ob-M: A

Jo— A
Fl—,uﬁ.M.{ 1] }

”M;{Ul %[a{’[b{%}} ey {7y

I'kMN : {[a,b] x! [c(,jil] x! [e’f]}

22



Method 3: Symbolic execution
— optimization for a common special case

23



Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[1]

23



Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[PI(D) = > /A da

paths U{VEI}

[1]

23



Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P](I Z/A da<Zv01AU{V€I} Hmaan

paths U{VEI} paths We=

[1]

23



Method 3: Symbolic execution
— optimization for a common special case

For each program path,
> «4: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P](I Z/A da<ZVOIAU{V€I} Hmaan

paths U{VEI} paths WeE

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

23



Method 3: Symbolic execution
— optimization for a common special case

For each program path,
» «i: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P)(I Z/A da<ZvolAU{V€I} [ max.w

paths U{VEI} paths We=

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

> linear optimization & interval arithmetic

23



Future work

> better heuristics for finding a “good” set of interval traces T
» integration into an approximate inference algorithm?

24



	Appendix
	Appendix


