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Problem: existing inference algorithms
X have few guarantees on the result or

X only work on a restricted class of models

Our contribution:
guaranteed bounds on the posterior -

v/ can find errors in inference results

v/ applicable to a broad ,
class of probabilistic programs
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Example model

start = sample uniform (0, 3)
position = start; distance = 0
while position > O:

step = sample uniform(-1, 1)

position += step

distance += abs(step)
observe 1.1 from normal (distance,
return start

Posterior distribution p(start | observation)?

0.

1)



Existing inference methods



Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)

@ ‘l'Q

Stan Pyro Anglican



Existing inference methods

1. Approximate: posterior ~ X
» Monte Carlo (particle filter, MCMC)

» or optimization-based (variational inference)
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Stan Pyro Anglican

2. Exact: posterior = X
» symbolic expression

">l soLver 2[1PL
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Issues with existing methods
» exact methods: restricted models

» approximate methods: implicit assumptions, slow
convergence
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» result value resval(s) for trace s
> weight weight(s): product of likelihoods of observations
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[PI(E) = / weight(s) ds = “P(start € F,0bs)”

{s|resval(s)eE}

Bayes’ rule ~ normalized posterior (conditional probability):

P(start € I/,0bs)  [P](E)

P(start € F | obs) = P(obs) =~ [AI®)




Interval traces

Want to bound [P](E weight(s) ds.

f{s|resva|(s)eE}



Interval traces

Want to bound [P](E weight(s) ds.

f{s|resva|(s)€E}

Idea: Riemann sums



Interval traces
Want to bound [P](E) = [, eevai(s)c i} Weight(s) ds.
Idea: Riemann sums

Cover {s | resval(s) € E} with interval traces T
» e.g. ([0.1,0.3],[0.7,1]) contains (0.2,0.9)



Interval traces

Want to bound [P](E) = [, eevai(s)c i} Weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) € E} with interval traces T
» e.g. ([0.1,0.3],[0.7,1]) contains (0.2,0.9)

[P](F) < Z max weight(t)) vol(t)

teT
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Interval trace semantics

start = sample uniform(0, 3)
position = start; distance = 0
while position > O0:
step = sample uniform(-1, 1)
position += step
distance += abs (step)
observe 1.1 from normal (distance, 0.12)
return start
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return value resval(s) 0.6 [0.5,0.6]
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Soundness
For a non-overlapping and exhaustive set of interval traces 7:

lowerBd}, < [P] < upperBd?.

Completeness

For all intervals I and ¢ > 0, there is a countable set 7 of
interval traces (non-overlapping and exhaustive) s.t.

upperBdL(I) — e < [P](I) < lowerBdL(I) + ¢
under mild assumptions about the program P.
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Examples that are hard for MCMC
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Comparison with previous work
Sankaranarayanan et al. (PLDI2013)
» bounding probabilities (but no observe)

» ours is usually slower, but often finds tighter bounds
PSI solver (CAV2016)

» consistency check: benchmarks from the PSI repository
» we can handle unbounded loops, contrary to PSI
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Also in the paper

> Interval type system: approximates unbounded loops and
recursion soundly

» Symbolic execution & linear programming: optimization
for linear guards

» Comparison with statistical validation methods:
simulation-based calibration

Limitations
» lots of branching

» high-dimensional models (many samples)



Guaranteed Bounds for Posterior Inference in
Universal Probabilistic Programming

Raven Beutner Luke Ong Fabian Zaiser

...are a middle ground between approximate and exact:
» guaranteed correct (vs. approximate inference)
» supports many language features (vs. exact inference)

Theory: soundness & completeness

Practice:

» detect issues with inference results z |

» competitive on existing benchmarks ‘Eﬂ imes)
» guaranteed results for programs L J?&mm

that other tools cannot handle 0 " tart positon
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Trace partitioning heuristics

Option 1: split equidistantly in each dimension

Option 2:
» start with the full interval trace ([—oo, o], . ..)

» pick the next interval t trace or, depending on the input
program, select it with a mix of the following criteria

> high weight weight!(t)
> wide value interval resval'(t)
» large volume vol(t)

» split that box in half along the dimension that reduces the
width of the interval of the posterior expected value the most

> repeat.
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Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics interval semantics
traces s =(0.2,0.8) t = ([0.2,0.3],[0.7,0.8])
value resval(s) € R resval'(t) € 1
weight weight(s) € [0, 00) weight'(t) € Ijp o)
posterior [P](E) llowerBd](E), upperBdL(E)]

integral over traces s sum over interval traces ¢
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Bounding the posterior

> vol(t) - (min weight'(t))
teT
resvall(¢)C1

< [P]() ::/ weight(s) ds
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Theoretical results

Soundness

lowerBd7, < [P] < upperBdF.

Completeness

For all intervals 7 and ¢ > 0, thereisa finite set 7 of
interval traces (non-overlapping and exhaustive) s.t.

[P](I) < lowerBd}(I) + ¢

under the assumptions:
» the primitive functions are continuous*

» each sampled value is used at most once in each condition,
observe statement, and in the return value.
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Method 2: Interval type system

— to overapproximate recursion and conditionals (not resolvable
by intervals)

> types keep track of the value and weight interval

[0, V']

> P { ;1 ¢ means resval(s) € [v,v'] and
[w, w']
weight(s) € [w, w'].
» efficient type inference
» uses interval arithmetic & widening to approximate fixpoints

21



Interval type system

Types:
» unweighted: o ::= [v,0'] | 0 — A
» weighted: A = {[wgw,]}

Selected typing rules:

o= Aiz:ob-M: A

Jo— A
Fl—,uﬁ.M.{ 1] }

”M;{Ul %[a{’[b{%}} ey {7y

I'kMN : {[a,b] x! [c(,jil] x! [e’f]}
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Method 3: Symbolic execution
— optimization for a common special case

For each program path,
» «i: the k-th sample

> V: result value, e.g. a; + 2a
> A:guards, e.g. {a1 <0,0q + g > 1}
> : Weights’ e.g. {pdiormal(O,l) (al - 042), pdiormal(l,Q) (043)}

[P)(I Z/A da<ZvolAU{V€I} [ max.w

paths U{VEI} paths We=

[1]

If A and V are affine then use
» polytope volume computation (— Vinci tool)

> linear optimization & interval arithmetic
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Future work

> better heuristics for finding a “good” set of interval traces T
» integration into an approximate inference algorithm?
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