
Guaranteed Bounds for Posterior
Inference in Universal Probabilistic

Programming

Raven Beutner1 Luke Ong2 Fabian Zaiser2

1CISPA Helmholtz Center for Information Security 2University of Oxford

PLDI 2022

1



Our work
I Probabilistic programming: Bayesian statistical models as

programs
I Vision: Bayesian inference algorithms for any program

Problem: existing inference algorithms
7 have few guarantees on the result or

7 only work on a restricted class of models

Our contribution:
guaranteed bounds on the posterior
3 can find errors in inference results

3 applicable to a broad
class of probabilistic programs

2



Our work
I Probabilistic programming: Bayesian statistical models as

programs
I Vision: Bayesian inference algorithms for any program

Problem: existing inference algorithms
7 have few guarantees on the result or

7 only work on a restricted class of models

Our contribution:
guaranteed bounds on the posterior
3 can find errors in inference results

3 applicable to a broad
class of probabilistic programs

2



Our work
I Probabilistic programming: Bayesian statistical models as

programs
I Vision: Bayesian inference algorithms for any program

Problem: existing inference algorithms
7 have few guarantees on the result or

7 only work on a restricted class of models

Our contribution:
guaranteed bounds on the posterior
3 can find errors in inference results

3 applicable to a broad
class of probabilistic programs

2



Example model

0 3

start = sample uniform(0,3)

position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution p(start | observation)?

3



Example model

0 3

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution p(start | observation)?

3



Example model

0 3

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)

return start

Posterior distribution p(start | observation)?

3



Example model

0 3

start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.1)
return start

Posterior distribution p(start | observation)?

3



Existing inference methods

1. Approximate: posterior ≈ X
I Monte Carlo (particle filter, MCMC)
I or optimization-based (variational inference)

Stan Pyro Anglican

2. Exact: posterior = X
I symbolic expression

SPPL

4



Existing inference methods

1. Approximate: posterior ≈ X
I Monte Carlo (particle filter, MCMC)
I or optimization-based (variational inference)

Stan Pyro Anglican

2. Exact: posterior = X
I symbolic expression

SPPL

4



Existing inference methods

1. Approximate: posterior ≈ X
I Monte Carlo (particle filter, MCMC)
I or optimization-based (variational inference)

Stan Pyro Anglican

2. Exact: posterior = X
I symbolic expression

SPPL
4



Issues with existing methods
I exact methods: restricted models
I approximate methods: implicit assumptions, slow

convergence

5



Issues with existing methods
I exact methods: restricted models
I approximate methods: implicit assumptions, slow

convergence

5



Guaranteed Bounds on the Posterior:
posterior(E) ∈ [a, b]

. . . for a universal PPL with continuous distributions and
observe.

Why?
I construct ground truth for inference problems
I to debug approximate inference

How?
1. interval traces & interval arithmetic (basic idea)

2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

6



Guaranteed Bounds on the Posterior:
posterior(E) ∈ [a, b]

. . . for a universal PPL with continuous distributions and
observe.

Why?
I construct ground truth for inference problems
I to debug approximate inference

How?
1. interval traces & interval arithmetic (basic idea)

2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

6



Guaranteed Bounds on the Posterior:
posterior(E) ∈ [a, b]

. . . for a universal PPL with continuous distributions and
observe.

Why?
I construct ground truth for inference problems
I to debug approximate inference

How?
1. interval traces & interval arithmetic (basic idea)

2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

6



Guaranteed Bounds on the Posterior:
posterior(E) ∈ [a, b]

. . . for a universal PPL with continuous distributions and
observe.

Why?
I construct ground truth for inference problems
I to debug approximate inference

How?
1. interval traces & interval arithmetic (basic idea)

2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

6



Guaranteed Bounds on the Posterior:
posterior(E) ∈ [a, b]

. . . for a universal PPL with continuous distributions and
observe.

Why?
I construct ground truth for inference problems
I to debug approximate inference

How?
1. interval traces & interval arithmetic (basic idea)

2. interval type system (overapproximation)

3. symbolic execution (optimization of special case)

6



Semantics of a probabilistic program
I trace s records sampled values, e.g. 〈0.23, 0.79〉
I result value resval(s) for trace s

I weight weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint probability):

JP K(E) :=

∫
{s|resval(s)∈E}

weight(s) ds = “P(start ∈ E,obs) ”

Bayes’ rule normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E,obs)

P(obs)
=

JP K(E)

JP K(R)

7



Semantics of a probabilistic program
I trace s records sampled values, e.g. 〈0.23, 0.79〉
I result value resval(s) for trace s

I weight weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint probability):

JP K(E) :=

∫
{s|resval(s)∈E}

weight(s) ds = “P(start ∈ E,obs) ”

Bayes’ rule normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E,obs)

P(obs)
=

JP K(E)

JP K(R)

7



Semantics of a probabilistic program
I trace s records sampled values, e.g. 〈0.23, 0.79〉
I result value resval(s) for trace s

I weight weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint probability):

JP K(E) :=

∫
{s|resval(s)∈E}

weight(s) ds = “P(start ∈ E,obs) ”

Bayes’ rule normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E,obs)

P(obs)
=

JP K(E)

JP K(R)

7



Semantics of a probabilistic program
I trace s records sampled values, e.g. 〈0.23, 0.79〉
I result value resval(s) for trace s

I weight weight(s): product of likelihoods of observations

Unnormalized posterior of E (joint probability):

JP K(E) :=

∫
{s|resval(s)∈E}

weight(s) ds = “P(start ∈ E,obs) ”

Bayes’ rule normalized posterior (conditional probability):

P(start ∈ E | obs) =
P(start ∈ E,obs)

P(obs)
=

JP K(E)

JP K(R)

7



Interval traces

Want to bound JP K(E) =
∫
{s|resval(s)∈E} weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) ∈ E} with interval traces T
I e.g. 〈[0.1, 0.3], [0.7, 1]〉 contains 〈0.2, 0.9〉

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

8



Interval traces

Want to bound JP K(E) =
∫
{s|resval(s)∈E} weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) ∈ E} with interval traces T
I e.g. 〈[0.1, 0.3], [0.7, 1]〉 contains 〈0.2, 0.9〉

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

8



Interval traces

Want to bound JP K(E) =
∫
{s|resval(s)∈E} weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) ∈ E} with interval traces T
I e.g. 〈[0.1, 0.3], [0.7, 1]〉 contains 〈0.2, 0.9〉

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

8



Interval traces

Want to bound JP K(E) =
∫
{s|resval(s)∈E} weight(s) ds.

Idea: Riemann sums

Cover {s | resval(s) ∈ E} with interval traces T
I e.g. 〈[0.1, 0.3], [0.7, 1]〉 contains 〈0.2, 0.9〉

JP K(E) ≤
∑
t∈T

(maxweight(t)) vol(t)

8



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start

0.6 [0.5, 0.6]

position

distance

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start

0.6 [0.5, 0.6]

position

distance

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position

distance

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.6 [0.5, 0.6]

distance 0.0 [0.0, 0.0]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.6 [0.5, 0.6]

distance 0.0 [0.0, 0.0]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.8 [0.6, 0.8]

distance 0.2 [0.1, 0.2]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.8 [0.6, 0.8]

distance 0.2 [0.1, 0.2]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) 1 [1, 1]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) ≈ 2.4 [0.53, 3.99]

return value resval(s)

9



Interval trace semantics
start = sample uniform(0,3)
position = start; distance = 0
while position > 0:

step = sample uniform(-1, 1)
position += step
distance += abs(step)

observe 1.1 from normal(distance, 0.12)
return start

standard interval semantics
start 0.6 [0.5, 0.6]

position 0.0 [−0.3, 0.0]

distance 1.0 [0.9, 1.1]

trace s 〈0.6 , 0.2 , −0.8〉 〈 [0.5, 0.6] , [0.1, 0.2] , [−0.9,−0.8]〉
weight weight(s) ≈ 2.4 [0.53, 3.99]

return value resval(s) 0.6 [0.5, 0.6]

9



Theoretical results

Soundness
For a non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤ JP K(I) ≤ lowerBdTP (I) + ε

under mild assumptions about the program P .

10



Theoretical results

Soundness
For a non-overlapping and exhaustive set of interval traces T :

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤ JP K(I) ≤ lowerBdTP (I) + ε

under mild assumptions about the program P .

10



Empirical evaluation
I Implementation: GuBPI (gubpi-tool.github.io)

Pedestrian example:

11

https://gubpi-tool.github.io/


Empirical evaluation
I Implementation: GuBPI (gubpi-tool.github.io)

Pedestrian example:

11

https://gubpi-tool.github.io/


Empirical evaluation
I Implementation: GuBPI (gubpi-tool.github.io)

Pedestrian example:

11

https://gubpi-tool.github.io/


Examples that are hard for MCMC

Neal’s funnel Mixture model

12



Comparison with previous work
Sankaranarayanan et al. (PLDI2013)
I bounding probabilities (but no observe)
I ours is usually slower, but often finds tighter bounds

PSI solver (CAV2016)
I consistency check: benchmarks from the PSI repository
I we can handle unbounded loops, contrary to PSI

13



Comparison with previous work
Sankaranarayanan et al. (PLDI2013)
I bounding probabilities (but no observe)
I ours is usually slower, but often finds tighter bounds

PSI solver (CAV2016)
I consistency check: benchmarks from the PSI repository
I we can handle unbounded loops, contrary to PSI

13



Also in the paper

I Interval type system: approximates unbounded loops and
recursion soundly

I Symbolic execution & linear programming: optimization
for linear guards

I Comparison with statistical validation methods:
simulation-based calibration

Limitations
I lots of branching
I high-dimensional models (many samples)

14



Also in the paper

I Interval type system: approximates unbounded loops and
recursion soundly

I Symbolic execution & linear programming: optimization
for linear guards

I Comparison with statistical validation methods:
simulation-based calibration

Limitations
I lots of branching
I high-dimensional models (many samples)

14



Guaranteed Bounds for Posterior Inference in
Universal Probabilistic Programming

Raven Beutner Luke Ong Fabian Zaiser

. . . are a middle ground between approximate and exact:
I guaranteed correct (vs. approximate inference)
I supports many language features (vs. exact inference)

Theory: soundness & completeness

Practice:
I detect issues with inference results
I competitive on existing benchmarks
I guaranteed results for programs

that other tools cannot handle

15



Backup slides

16



Trace partitioning heuristics
Option 1: split equidistantly in each dimension

Option 2:
I start with the full interval trace 〈[−∞,∞], . . . 〉
I pick the next interval t trace or, depending on the input

program, select it with a mix of the following criteria
I high weight weightI(t)

I wide value interval resvalI(t)

I large volume vol(t)

I split that box in half along the dimension that reduces the
width of the interval of the posterior expected value the most

I repeat.

17



Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics

interval semantics

traces s = 〈0.2, 0.8〉

t = 〈[0.2, 0.3], [0.7, 0.8]〉

value resval(s) ∈ R

resvalI(t) ∈ I

weight weight(s) ∈ [0,∞)

weightI(t) ∈ I[0,∞)

posterior JP K(E)

[lowerBdTP (E), upperBdTP (E)]

integral over traces s

sum over interval traces t

18



Method 1: Interval traces

Idea: summarize traces using intervals

standard semantics interval semantics

traces s = 〈0.2, 0.8〉 t = 〈[0.2, 0.3], [0.7, 0.8]〉
value resval(s) ∈ R resvalI(t) ∈ I
weight weight(s) ∈ [0,∞) weightI(t) ∈ I[0,∞)

posterior JP K(E) [lowerBdTP (E), upperBdTP (E)]

integral over traces s sum over interval traces t

18



Bounding the posterior

lowerBdTP (I)

:=
∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤

JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is

“non-overlapping” and

“exhaustive” (covers every trace) and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Bounding the posterior

lowerBdTP (I)

:=
∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤

JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is

“non-overlapping” and

“exhaustive” (covers every trace)

and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Bounding the posterior

lowerBdTP (I)

:=
∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤

JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is

“non-overlapping” and

“exhaustive” (covers every trace) and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Bounding the posterior

lowerBdTP (I)

:=
∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤

JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is

“non-overlapping” and

“exhaustive” (covers every trace) and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Bounding the posterior

lowerBdTP (I)

:=

∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤ JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is “non-overlapping” and
“exhaustive” (covers every trace) and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Bounding the posterior

lowerBdTP (I)

:=
∑
t∈T

resvalI(t)⊆I

vol(t) · (minweightI(t))

≤ JP K(I) :=

∫
{s|resval(s)∈I}

weight(s) ds

≤
∑
t∈T

resvalI(t)∩I 6=∅

vol(t) · (maxweightI(t))

=: upperBdTP (I)

. . . if T is a set of interval traces that is “non-overlapping” and
“exhaustive” (covers every trace) and where

vol(〈[a1, b1], . . . , [an, bn]〉) := (b1 − a1)× · · · × (bn − an)

19



Theoretical results
Soundness

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤ JP K(I) ≤ lowerBdTP (I) + ε

under the assumptions:
I the primitive functions are continuous*
I each sampled value is used at most once in each condition,

observe statement, and in the return value.

20



Theoretical results
Soundness

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤ JP K(I) ≤ lowerBdTP (I) + ε

under the assumptions:
I the primitive functions are continuous*
I each sampled value is used at most once in each condition,

observe statement, and in the return value.

20



Theoretical results
Soundness

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a countable set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤ JP K(I) ≤ lowerBdTP (I) + ε

under the assumptions:
I the primitive functions are continuous*
I each sampled value is used at most once in each condition,

observe statement, and in the return value.

20



Theoretical results
Soundness

lowerBdTP ≤ JP K ≤ upperBdTP .

Completeness

For all intervals I and ε > 0, there is a finite set T of
interval traces (non-overlapping and exhaustive) s.t.

upperBdTP (I)− ε ≤

JP K(I) ≤ lowerBdTP (I) + ε

under the assumptions:
I the primitive functions are continuous*
I each sampled value is used at most once in each condition,

observe statement, and in the return value.

20



Method 2: Interval type system

→ to overapproximate recursion and conditionals (not resolvable
by intervals)

I types keep track of the value and weight interval

I ` P :

{
[v, v′]
[w,w′]

}
means resval(s) ∈ [v, v′] and

weight(s) ∈ [w,w′].
I efficient type inference
I uses interval arithmetic & widening to approximate fixpoints

21



Method 2: Interval type system

→ to overapproximate recursion and conditionals (not resolvable
by intervals)

I types keep track of the value and weight interval

I ` P :

{
[v, v′]
[w,w′]

}
means resval(s) ∈ [v, v′] and

weight(s) ∈ [w,w′].
I efficient type inference
I uses interval arithmetic & widening to approximate fixpoints

21



Interval type system
Types:
I unweighted: σ ::= [v, v′] | σ → A

I weighted: A ::=

{
σ

[w,w′]

}
Selected typing rules:

Γ;ϕ : σ → A;x : σ `M : A

Γ ` µϕx .M :

{
σ → A
[1, 1]

}

Γ `M :

σ1 →
{

σ2

[e, f ]

}
[a, b]

 Γ ` N :

{
σ1

[c, d]

}

Γ `MN :

{
σ2

[a, b]×I [c, d]×I [e, f ]

}
22



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα

≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)
I linear optimization & interval arithmetic

23



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα

≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)
I linear optimization & interval arithmetic

23



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα

≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)
I linear optimization & interval arithmetic

23



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα ≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)
I linear optimization & interval arithmetic

23



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα ≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)

I linear optimization & interval arithmetic

23



Method 3: Symbolic execution
→ optimization for a common special case

For each program path,
I αk: the k-th sample

I V: result value, e.g. α1 + 2α2

I ∆: guards, e.g. {α1 ≤ 0, α1 + α2 > 1}
I Ξ: weights, e.g. {pdfNormal(0,1)(α1 − α2), pdfNormal(1,2)(α3)}

JP K(I) =
∑
paths

∫
∆∪{V∈I}

(∏
Ξ
)

dα ≤
∑
paths

vol(∆ ∪ {V ∈ I})
∏
W∈Ξ

maxαW

If ∆ and V are affine then use
I polytope volume computation (→ Vinci tool)
I linear optimization & interval arithmetic

23



Future work

I better heuristics for finding a “good” set of interval traces T
I integration into an approximate inference algorithm?

24


	Appendix
	Appendix


