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Tools for Exact Inference

X ~ Poisson(10)
Y ~ Binomial(X, 0.2)

observeY =1

4@ X Only supports finite discrete distributions.

Dice [Holtzen et al. 2020]

X Parameters of distributions must have fi-
nite support.

SPPL [Saad et al. 2021]

PSI

PSI[Gehr et al. 2016]

X Outputs a symbolic expression involving
SOLVER infinite sums.
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pmfy : N — [0, 1]
n— PX =n]

(X,Y,Z) ~ D (supported on N?)

pmfyy , : N* = [0,1]
r,y,z—>PX =xY =y, Z =2
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Infinite Support
]

X ~ Poisson(10)
Y ~ Binomial(X,0.2)

:i]P’[YzQ,X:x]:ZIP’[X:x]]P’[Y:9|X:x]

- Z pmmesson(lO pmelnomlaI(az 0.2) (9)

Not computable exactly using probability mass functions!
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Probability Generating Functions

X ~ D (supported on N)
Generating function (aka factorial moment generating function):
pgfy : [—1,1] = R
pefy(t) = E[t¥] (discrete & continuous)
=p(0) + p(1)t + p(2)t* + p(3)t> + ... (only discrete)
where p(n) = P[X = n]
Closed forms for most common distributions:
Binomial(n, p) (pt+1—p)"
NegBinomial(r, p) (11%;)
Geometric(p) ﬁ
Poisson(\) M=)



Several variables

(X,Y,Z) ~ D (supported on N?)
Generating function:

pefyyz: [-1L1° = R

ngX,Y,Z(an Y, z) = E[nyYZZ]

= Z p(a, b, c)xy’z°

a,b,ceN

where p(a,b,c) =P[X =a,Y =b,Z =
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Suppose X has generating function g(t) = > . p(n)t".

.. (n)
Then p(n) are the Taylor coefficients at ¢ = 0, so p(n) = £-@,

n:
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Computing the (factorial) moments
Suppose X has generating function ¢(t) = E[t*].
Then ¢/(1) = $E[tY]|,_, = E[X #V]|,_, = E[X].
More generally, the factorial moment of order n is:

E[X(X—l)...(X—n+1)]:E{d—ntx}

— 4™
7= 9™ (1)

t=1

The variance can be found as:
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Summary: Generating Functions
Suppose X has generating function ¢(t) = E[t*].

EX(X —1)...(X —n+1)] = ¢™(1)

Take-aways:

» Generating functions are a finite representation of
distributions (even with infinite support)

» Can compute mass and moments mechanically
» No computer algebra necessary
» Only need automatic differentiation
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Related work using generating functions

Bayesian inference for graphical models:
» Winner et al., NeurlPS 2016: specific graphical model with a
closed form for the generating function

» Winner et al., ICML 2017: slightly generalized graphical
model, uses autodiff

Randomized programs (no conditioning):
» Klinkenberg et al., LOPSTR 2020: analyze discrete
randomized programs (no conditioning)

» Chen et al., CAV 2022: check equivalence of a restricted
class of discrete randomized programs
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Sampling

Affine transform
Branching
Conditioning
Nested inference
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SGCL: Statistical Guarded Command Lang.

Fixed set of variables V = { X1, ..., X,,}, taking values in N.
Sampling X;~D
Affine transform X, :=aX,; +0X;, +¢ Wwherea,b,ce N
Branching if X; = c{P,}else{Ps}
Conditioning observe X; = ¢
Nested inference normalize { P}

Distributions

D € {Bernoulli(p), Binomial( X}, p), NegBinomial (X, p),
Geometric(p), Poisson(AX}), Uniform{ X}.. X, + a}
|peR,Ae(0,00),a € N}
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Ordinary Transformer Semantics

Distributions on program states are represented by their
probability mass function, i.e. o : N* — [0, 1] where
V={X,...,Xp}and ) no(z) <1

Transformer semantics: o’ = (P)(o) is the subprobability
distribution of states after running P.

For simplicity, we only use two variables: XY, i.e.
o(z,y) =PX =z, =1y

Affine transform:
<X = aX + bY + C> (0-) (‘7“7 y) = Zx’:ax’-{—by-ﬁ-c:x O'(I/, y)

Sampling: (X ~ D)(0)(x,y) = 2_een (@, y) - pmfp(2).
Conditioning: (observe X = ¢)(0)(x,y) = o(z,y) - [x = ¢].
)

Normalize: (normalize {P})(c)(z,y) = Ei:;;g‘(gf’;y) (P)(0)(z, ).
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Generating Function Semantics [Klinkenberg
et al., 2020]

Subprobability distributions of states are represented as a
generating function, i.e. G : [-1,1]" — R where
V: {le‘--an}-

Generating function semantics: G' = [P](G) is the generating
function of the state distribution after running P.

For simplicity, we only use two variables X, and Y, i.e.
G(z,y) =E[z* - y"].

Marginalizing: [X = 0](G)(z,y) = E[2%Y] = E[1¥XyY] = G(1,y)

Affine transform: [X = aX + bY + ¢](G)(z, y) = E[xaX TV Fey¥] =
E[(x®)¥ (zy)"] - 2¢ = G(a%, a%y) - 2.



Semantics of Sampling

For a distribution D with constant parameters [Klinkenberg et al.,
2020]:

[X ~ D)(G)(z,y) = Ex~p[z*y"]
= E[y" [Ex~p[z"]
= G(1,y)pefp(r)



Semantics of Sampling

For a distribution D with constant parameters [Klinkenberg et al.,
2020]:

[X ~ DJ(G)(x,y) = Explz™y"]
= E[y" [Ex~p[z"]
= G(1,y)pefp(r)

For distributions with random parameters, we find:

[X ~ Binomial(Y, p)|(G)(z,y) = G(1,y(pr +1 —p)) [Winner et al., 2016]

[X ~ NegBinomial(Y, p)](G)(x,y) = G(l,yll__;;:) new

[X ~ Poisson(AY)](G)(x,y) = G(1, ye @) new



Semantics of Conditioning (new)

[observe X = c](G)(z,y)
= E[z*y"[X =]
= 2Bz " [X =]

= TE[X(X ~ 1) (X — o+ DEy -y [X = o]

I A
o (8xCE[m i ])

g;.C ac
= ¢l Oxe G0,9)

z=0




Semantics of Conditioning (new)

[observe X = c](G)(x,y)
= E[zXyY[X =]
= B[z " [X =]

— %E (XX~ 1) (X —c+ 1)’y - y¥  [X =]

Lty
e (81}0E[$ Y ]>
x¢ 0°

= ¢l Oxe

=0

G(0,y)

|
Observing a value ¢ requires evaluating the c-th derivative of the
generating function!

17



Semantics of Normalization [new]

Total probability mass:

E[1] = E[1*1Y] = G(1,1).



Semantics of Normalization [new]

Total probability mass:

E[1] = E[1*1Y] = G(1,1).

So to normalize a subprogram P:

G(1,1)

[normalize { P}](G)(z,y) = [[P]](G)’(l 1)

[PIG).
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normalize { X ~ Poisson(10); Y ~ Binomial(X,0.2); observe Y = 1}

> Alr,y) = El’y] = 1.
» Sampling Poisson: B(z,y) = A(1,y)el?@ D = l0==1),

» Sampling Binomial:
C(z,y) = B(x(0.2y +0.8),1) = exp(10(x(0.2y + 0.8) — 1)).
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Example

normalize { X ~ Poisson(10); Y ~ Binomial(X,0.2); observe Y = 1}

> Alr,y) = El’y] = 1.
» Sampling Poisson: B(z,y) = A(1,y)el?@ D = l0==1),

» Sampling Binomial:
C(z,y) = B(z(0.2y + 0.8),1) = exp(lO(:U 0.2y + 0.8) — 1)).

(
> Observing Y = 1: D(z,y) = 1y = 8y C(z,0) = 2zyets—10,
D(

z,y)

-8
D(1,1) .

> Normalizing: E(z,y) = 2N D(z,y) =

@D — xye&r
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Extracting information from the generating
function

E(z,y) = 2> %y

Extracting information from that generating function:

10 _
> PLX =10] = %mé%E(O, 1) = 102488355766 i

> E[X]=2E(1,1)=9
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Extracting information from the generating
function

E(z,y) = 2> %y

Extracting information from that generating function:
> PX = 10] = 15 25 E(0,1) = 10485768
> E[X]=2E(1,1)=9

» The program
X ~ Poisson(8); X :=X +1;Y =1

has the same GF G(z,y) = ze® 3yl

20



Example 2: Population modeling (HMM)

Modeling animal populations [Winner et al., NeurlPS 2016]:

population = 0;

arrivals ~ Poisson(\);

survivors ~ Binomial(population, §);
population = arrivals + survivors;
observed ~ Binomial(population, p);

observe observed = . . . ;

°

21



Example 3: Bayesian change point analysis
From the PyMCS3 tutorial:
» number of coal mining disasters d; over the last 100 years

» reason to believe that the rate has changed
» model as Poisson distribution with two different rates.
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Example 3: Bayesian change point analysis
From the PyMCS3 tutorial:
» number of coal mining disasters d; over the last 100 years

» reason to believe that the rate has changed
» model as Poisson distribution with two different rates.

switchpoint ~ Uniform(0, 100);
A1 ~ Exponential(1);
Ao ~ Exponential(1);

fort € {0,...,100}{
if switchpoint <t {obs ~ Poisson(\y)} else {obs ~ Poisson(\;)}

observe obs = d,

}
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Example 3: Bayesian change point analysis
From the PyMCS3 tutorial:
» number of coal mining disasters d; over the last 100 years

» reason to believe that the rate has changed
» model as Poisson distribution with two different rates.

switchpoint ~ Uniform(0, 100);
A1 ~ Geometric(0.2);
Ay ~ Geometric(0.2);

fort € {0,...,100}{
if switchpoint <t {obs ~ Poisson(\y)} else {obs ~ Poisson(\1)}

observe obs = d,

}

22
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Implementation — Lessons
| implemented the semantics in Rust.
» Computation of derivatives is the bottleneck.

» Existing autodiff frameworks focus on 1st & 2nd derivative,
very slow for higher order

» Manual implementation of higher-order derivatives is still slow

» Maximize sharing of subexpressions in the computation
graph

» Computing directly with Taylor expansions is more efficient
than autodiff (100x speedup)

Exponential blowup:

» Size of the generating function can grow exponentially with
the constants in the program.

» Heavy use of conditionals can lead to path explosion (but not
common in probabilistic models).
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Demo of implementation



Limitations

Language features:
» only affine functions (e.g. no X?)

» only comparisons between variables and constants (e.g. no
X =Y)

» only discrete distributions
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Limitations

Language features:
» only affine functions (e.g. no X?)

» only comparisons between variables and constants (e.g. no
X =Y)

» only discrete distributions

Performance:

» worst-case exponential in the constants appearing in the
program

» But works well for some models.
» Path explosion with many if statements.

25



Future Work

» Extensions to loops and recursion (lower bounds should be
easy)

» Extension to a higher-order functional language

26



Generating Functions — Summary

| 2

| 2

GFs are a finite closed-form representation for infinite
distributions.

Probability mass and moments can be exiracted
mechanically from GFs.

No computer algebra needed.
Needed: autodiff/Taylor expansion.

Supports many language features: affine transformations,
discrete distributions (even with random parameters),
conditionals, conditioning, nested inference.

Practical examples: population modeling & Bayesian change
point analysis.

Implementation promising for practical probabilistic programs.

Limitations: exponential blowup.

27



Backup slides



Why only discrete distributions?

» P[X = n]is uninteresting for continuous distribution (always
zero)

» reconstructing the density function from the factorial moment
generating function requires solving integrals

» the factorial moment generating function does not exist for all
distributions (e.g. Cauchy distribution)

» Observations from continuous distributions cannot be
expressed as conditioning on an event (instead it’s
multiplication by the probability density function).

29



