
Exact Inference for Discrete Probabilistic
Programs via Generating Functions

Fabian Zaiser

University of Oxford

ANR PPS workshop, 2023-01-05

1



Probabilistic Programming
▶ Suppose your coworker receives 10 calls per week on

average.
▶ Each call is a scam independently with probability 20%.
▶ At the end of the week, your coworker is surprised that they

got only one scam call.
What is the posterior probability distribution of the number of
calls?

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

2



Probabilistic Programming
▶ Suppose your coworker receives 10 calls per week on

average.
▶ Each call is a scam independently with probability 20%.
▶ At the end of the week, your coworker is surprised that they

got only one scam call.
What is the posterior probability distribution of the number of
calls?

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

2



Bayes’ rule

P[X = x | Y = 1] =
P[X = x]× P[Y = 1 | X = x]

P[Y = 1]

=

unnormalized posterior︷ ︸︸ ︷
prior × likelihood

normalizing constant
= posterior

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

0 5 10 15 20 25 30
#calls

pr
ob

ab
ilit

y

prior
likelihood
posterior

3



Bayes’ rule

P[X = x | Y = 1] =
P[X = x]× P[Y = 1 | X = x]

P[Y = 1]

=

unnormalized posterior︷ ︸︸ ︷
prior × likelihood

normalizing constant
= posterior

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

0 5 10 15 20 25 30
#calls

pr
ob

ab
ilit

y

prior
likelihood
posterior

3



Bayes’ rule

P[X = x | Y = 1] =
P[X = x]× P[Y = 1 | X = x]

P[Y = 1]

=

unnormalized posterior︷ ︸︸ ︷
prior × likelihood

normalizing constant
= posterior

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

0 5 10 15 20 25 30
#calls

pr
ob

ab
ilit

y

prior
likelihood
posterior

3



Tools for Exact Inference

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

Dice [Holtzen et al. 2020]

✗ Only supports finite discrete distributions.

SPPL [Saad et al. 2021]

✗ Parameters of distributions must have fi-
nite support.

PSI [Gehr et al. 2016]

✗ Outputs a symbolic expression involving
infinite sums.

4



Tools for Exact Inference

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

Dice [Holtzen et al. 2020]

✗ Only supports finite discrete distributions.

SPPL [Saad et al. 2021]

✗ Parameters of distributions must have fi-
nite support.

PSI [Gehr et al. 2016]

✗ Outputs a symbolic expression involving
infinite sums.

4



Tools for Exact Inference

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

Dice [Holtzen et al. 2020]

✗ Only supports finite discrete distributions.

SPPL [Saad et al. 2021]

✗ Parameters of distributions must have fi-
nite support.

PSI [Gehr et al. 2016]

✗ Outputs a symbolic expression involving
infinite sums.

4



Tools for Exact Inference

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

Dice [Holtzen et al. 2020]

✗ Only supports finite discrete distributions.

SPPL [Saad et al. 2021]

✗ Parameters of distributions must have fi-
nite support.

PSI [Gehr et al. 2016]

✗ Outputs a symbolic expression involving
infinite sums.

4



Probability Mass Functions

X ∼ D (supported on N)

pmfX : N → [0, 1]

n 7→ P[X = n]

(X, Y, Z) ∼ D (supported on N3)

pmfX,Y,Z : N3 → [0, 1]

x, y, z 7→ P[X = x, Y = y, Z = z]

5



Probability Mass Functions

X ∼ D (supported on N)

pmfX : N → [0, 1]

n 7→ P[X = n]

(X, Y, Z) ∼ D (supported on N3)

pmfX,Y,Z : N3 → [0, 1]

x, y, z 7→ P[X = x, Y = y, Z = z]

5



Infinite Support

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

P[Y = 9] =
∞∑
x=0

P[Y = 9, X = x] =
∞∑
x=0

P[X = x]P[Y = 9 | X = x]

=
∞∑
x=0

pmfPoisson(10)(x)pmfBinomial(x,0.2)(9)

Not computable exactly using probability mass functions!

6



Infinite Support

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

P[Y = 9] =
∞∑
x=0

P[Y = 9, X = x] =
∞∑
x=0

P[X = x]P[Y = 9 | X = x]

=
∞∑
x=0

pmfPoisson(10)(x)pmfBinomial(x,0.2)(9)

Not computable exactly using probability mass functions!

6



Infinite Support

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

P[Y = 9] =
∞∑
x=0

P[Y = 9, X = x] =
∞∑
x=0

P[X = x]P[Y = 9 | X = x]

=
∞∑
x=0

pmfPoisson(10)(x)pmfBinomial(x,0.2)(9)

Not computable exactly using probability mass functions!

6



Probability Generating Functions

X ∼ D (supported on N)

Generating function (aka factorial moment generating function):

pgfX : [−1, 1] → R
pgfX(t) = E[tX ] (discrete & continuous)

= p(0) + p(1)t+ p(2)t2 + p(3)t3 + . . . (only discrete)
where p(n) = P[X = n]

Closed forms for most common distributions:
Binomial(n, p) (pt+ 1− p)n

NegBinomial(r, p)
(

1−p
1−pt

)r

Geometric(p) p
1−(1−p)t

Poisson(λ) eλ(t−1)

7



Probability Generating Functions

X ∼ D (supported on N)

Generating function (aka factorial moment generating function):

pgfX : [−1, 1] → R
pgfX(t) = E[tX ] (discrete & continuous)

= p(0) + p(1)t+ p(2)t2 + p(3)t3 + . . . (only discrete)
where p(n) = P[X = n]

Closed forms for most common distributions:
Binomial(n, p) (pt+ 1− p)n

NegBinomial(r, p)
(

1−p
1−pt

)r

Geometric(p) p
1−(1−p)t

Poisson(λ) eλ(t−1)

7



Several variables

(X, Y, Z) ∼ D (supported on N3)

Generating function:

pgfX,Y,Z : [−1, 1]3 → R
pgfX,Y,Z(x, y, z) = E[xXyY zZ ]

=
∑

a,b,c∈N

p(a, b, c)xaybzc

where p(a, b, c) = P[X = a, Y = b, Z = c]

8



Getting back the probability mass

Suppose X has generating function g(t) =
∑

n∈N p(n)t
n.

Then p(n) are the Taylor coefficients at t = 0, so p(n) = g(n)(0)
n!

.

9



Getting back the probability mass

Suppose X has generating function g(t) =
∑

n∈N p(n)t
n.

Then p(n) are the Taylor coefficients at t = 0, so p(n) = g(n)(0)
n!

.

9



Computing the (factorial) moments
Suppose X has generating function g(t) = E[tX ].

Then g′(1) = d
dt
E[tX ]

∣∣
t=1

= E[X tX ]
∣∣
t=1

= E[X].

More generally, the factorial moment of order n is:

E[X(X − 1) . . . (X − n+ 1)] = E
[
dn

dtn
tX

] ∣∣∣∣
t=1

= g(n)(1)

The variance can be found as:

V[X] = E[X2]− E[X]2

= E[X] + E[X(X − 1)]− E[X]2

= g′(1) + g′′(1)− (g′(1))2

10



Computing the (factorial) moments
Suppose X has generating function g(t) = E[tX ].

Then g′(1) = d
dt
E[tX ]

∣∣
t=1

= E[X tX ]
∣∣
t=1

= E[X].

More generally, the factorial moment of order n is:

E[X(X − 1) . . . (X − n+ 1)] = E
[
dn

dtn
tX

] ∣∣∣∣
t=1

= g(n)(1)

The variance can be found as:

V[X] = E[X2]− E[X]2

= E[X] + E[X(X − 1)]− E[X]2

= g′(1) + g′′(1)− (g′(1))2

10



Computing the (factorial) moments
Suppose X has generating function g(t) = E[tX ].

Then g′(1) = d
dt
E[tX ]

∣∣
t=1

= E[X tX ]
∣∣
t=1

= E[X].

More generally, the factorial moment of order n is:

E[X(X − 1) . . . (X − n+ 1)] = E
[
dn

dtn
tX

] ∣∣∣∣
t=1

= g(n)(1)

The variance can be found as:

V[X] = E[X2]− E[X]2

= E[X] + E[X(X − 1)]− E[X]2

= g′(1) + g′′(1)− (g′(1))2

10



Computing the (factorial) moments
Suppose X has generating function g(t) = E[tX ].

Then g′(1) = d
dt
E[tX ]

∣∣
t=1

= E[X tX ]
∣∣
t=1

= E[X].

More generally, the factorial moment of order n is:

E[X(X − 1) . . . (X − n+ 1)] = E
[
dn

dtn
tX

] ∣∣∣∣
t=1

= g(n)(1)

The variance can be found as:

V[X] = E[X2]− E[X]2

= E[X] + E[X(X − 1)]− E[X]2

= g′(1) + g′′(1)− (g′(1))2

10



Summary: Generating Functions
Suppose X has generating function g(t) = E[tX ].

P[X = n] =
g(n)(0)

n!
E[X(X − 1) . . . (X − n+ 1)] = g(n)(1)

Take-aways:
▶ Generating functions are a finite representation of

distributions (even with infinite support)
▶ Can compute mass and moments mechanically
▶ No computer algebra necessary
▶ Only need automatic differentiation

11



Summary: Generating Functions
Suppose X has generating function g(t) = E[tX ].

P[X = n] =
g(n)(0)

n!
E[X(X − 1) . . . (X − n+ 1)] = g(n)(1)

Take-aways:
▶ Generating functions are a finite representation of

distributions (even with infinite support)
▶ Can compute mass and moments mechanically
▶ No computer algebra necessary
▶ Only need automatic differentiation

11



Related work using generating functions

Bayesian inference for graphical models:
▶ Winner et al., NeurIPS 2016: specific graphical model with a

closed form for the generating function
▶ Winner et al., ICML 2017: slightly generalized graphical

model, uses autodiff

Randomized programs (no conditioning):
▶ Klinkenberg et al., LOPSTR 2020: analyze discrete

randomized programs (no conditioning)
▶ Chen et al., CAV 2022: check equivalence of a restricted

class of discrete randomized programs

12



Related work using generating functions

Bayesian inference for graphical models:
▶ Winner et al., NeurIPS 2016: specific graphical model with a

closed form for the generating function
▶ Winner et al., ICML 2017: slightly generalized graphical

model, uses autodiff

Randomized programs (no conditioning):
▶ Klinkenberg et al., LOPSTR 2020: analyze discrete

randomized programs (no conditioning)
▶ Chen et al., CAV 2022: check equivalence of a restricted

class of discrete randomized programs

12



SGCL: Statistical Guarded Command Lang.
Fixed set of variables V = {X1, . . . , Xn}, taking values in N.

Sampling Xi ∼ D
Affine transform Xi := aXj + bXk + c where a, b, c ∈ N
Branching ifXi = c {P1} else {P2}
Conditioning observeXi = c

Nested inference normalize {P}

Distributions

D ∈ {Bernoulli(p),Binomial(Xk, p),NegBinomial(Xk, p),

Geometric(p),Poisson(λXk),Uniform{Xk..Xk + a}
| p ∈ R, λ ∈ (0,∞), a ∈ N}.

13



SGCL: Statistical Guarded Command Lang.
Fixed set of variables V = {X1, . . . , Xn}, taking values in N.

Sampling Xi ∼ D
Affine transform Xi := aXj + bXk + c where a, b, c ∈ N
Branching ifXi = c {P1} else {P2}
Conditioning observeXi = c

Nested inference normalize {P}

Distributions

D ∈ {Bernoulli(p),Binomial(Xk, p),NegBinomial(Xk, p),

Geometric(p),Poisson(λXk),Uniform{Xk..Xk + a}
| p ∈ R, λ ∈ (0,∞), a ∈ N}.

13



SGCL: Statistical Guarded Command Lang.
Fixed set of variables V = {X1, . . . , Xn}, taking values in N.

Sampling Xi ∼ D
Affine transform Xi := aXj + bXk + c where a, b, c ∈ N
Branching ifXi = c {P1} else {P2}
Conditioning observeXi = c

Nested inference normalize {P}

Distributions

D ∈ {Bernoulli(p),Binomial(Xk, p),NegBinomial(Xk, p),

Geometric(p),Poisson(λXk),Uniform{Xk..Xk + a}
| p ∈ R, λ ∈ (0,∞), a ∈ N}.

13



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Ordinary Transformer Semantics
Distributions on program states are represented by their
probability mass function, i.e. σ : Nn → [0, 1] where
V = {X1, . . . , Xn} and

∑
x∈Nn σ(x) ≤ 1.

Transformer semantics: σ′ = ⟨P ⟩(σ) is the subprobability
distribution of states after running P .

For simplicity, we only use two variables: X, Y , i.e.
σ(x, y) = P[X = x, Y = y].

Affine transform:
⟨X := aX + bY + c⟩(σ)(x, y) =

∑
x′:ax′+by+c=x σ(x

′, y).

Sampling: ⟨X ∼ D⟩(σ)(x, y) =
∑

a∈N σ(a, y) · pmfD(x).

Conditioning: ⟨observeX = c⟩(σ)(x, y) = σ(x, y) · [x = c].

Normalize: ⟨normalize {P}⟩(σ)(x, y) =
∑

x,y∈N σ(x,y)∑
x,y∈N⟨P ⟩(σ)(x,y)⟨P ⟩(σ)(x, y).

14



Generating Function Semantics [Klinkenberg
et al., 2020]
Subprobability distributions of states are represented as a
generating function, i.e. G : [−1, 1]n → R where
V = {X1, . . . , Xn}.

Generating function semantics: G′ = JP K(G) is the generating
function of the state distribution after running P .

For simplicity, we only use two variables X, and Y , i.e.
G(x, y) = E[xX · yY ].

Marginalizing: JX = 0K(G)(x, y) = E[x0yY ] = E[1XyY ] = G(1, y)

Affine transform: JX = aX + bY + cK(G)(x, y) = E[xaX+bY+cyY ] =
E[(xa)X(xby)Y ] · xc = G(xa, xby) · xc.

15



Generating Function Semantics [Klinkenberg
et al., 2020]
Subprobability distributions of states are represented as a
generating function, i.e. G : [−1, 1]n → R where
V = {X1, . . . , Xn}.

Generating function semantics: G′ = JP K(G) is the generating
function of the state distribution after running P .

For simplicity, we only use two variables X, and Y , i.e.
G(x, y) = E[xX · yY ].

Marginalizing: JX = 0K(G)(x, y) = E[x0yY ] = E[1XyY ] = G(1, y)

Affine transform: JX = aX + bY + cK(G)(x, y) = E[xaX+bY+cyY ] =
E[(xa)X(xby)Y ] · xc = G(xa, xby) · xc.

15



Generating Function Semantics [Klinkenberg
et al., 2020]
Subprobability distributions of states are represented as a
generating function, i.e. G : [−1, 1]n → R where
V = {X1, . . . , Xn}.

Generating function semantics: G′ = JP K(G) is the generating
function of the state distribution after running P .

For simplicity, we only use two variables X, and Y , i.e.
G(x, y) = E[xX · yY ].

Marginalizing: JX = 0K(G)(x, y) = E[x0yY ] = E[1XyY ] = G(1, y)

Affine transform: JX = aX + bY + cK(G)(x, y) = E[xaX+bY+cyY ] =
E[(xa)X(xby)Y ] · xc = G(xa, xby) · xc.

15



Generating Function Semantics [Klinkenberg
et al., 2020]
Subprobability distributions of states are represented as a
generating function, i.e. G : [−1, 1]n → R where
V = {X1, . . . , Xn}.

Generating function semantics: G′ = JP K(G) is the generating
function of the state distribution after running P .

For simplicity, we only use two variables X, and Y , i.e.
G(x, y) = E[xX · yY ].

Marginalizing: JX = 0K(G)(x, y) = E[x0yY ] = E[1XyY ] = G(1, y)

Affine transform: JX = aX + bY + cK(G)(x, y) = E[xaX+bY+cyY ] =
E[(xa)X(xby)Y ] · xc = G(xa, xby) · xc.

15



Generating Function Semantics [Klinkenberg
et al., 2020]
Subprobability distributions of states are represented as a
generating function, i.e. G : [−1, 1]n → R where
V = {X1, . . . , Xn}.

Generating function semantics: G′ = JP K(G) is the generating
function of the state distribution after running P .

For simplicity, we only use two variables X, and Y , i.e.
G(x, y) = E[xX · yY ].

Marginalizing: JX = 0K(G)(x, y) = E[x0yY ] = E[1XyY ] = G(1, y)

Affine transform: JX = aX + bY + cK(G)(x, y) = E[xaX+bY+cyY ] =
E[(xa)X(xby)Y ] · xc = G(xa, xby) · xc.

15



Semantics of Sampling
For a distribution D with constant parameters [Klinkenberg et al.,
2020]:

JX ∼ DK(G)(x, y) = EX∼D[x
XyY ]

= E[yY ]EX∼D[x
X ]

= G(1, y)pgfD(x)

For distributions with random parameters, we find:

JX ∼ Binomial(Y, p)K(G)(x, y) = G(1, y(px+ 1− p)) [Winner et al., 2016]

JX ∼ NegBinomial(Y, p)K(G)(x, y) = G(1, y
1− p

1− px
) new

JX ∼ Poisson(λY )K(G)(x, y) = G(1, yeλ(x−1)) new

16



Semantics of Sampling
For a distribution D with constant parameters [Klinkenberg et al.,
2020]:

JX ∼ DK(G)(x, y) = EX∼D[x
XyY ]

= E[yY ]EX∼D[x
X ]

= G(1, y)pgfD(x)

For distributions with random parameters, we find:

JX ∼ Binomial(Y, p)K(G)(x, y) = G(1, y(px+ 1− p)) [Winner et al., 2016]

JX ∼ NegBinomial(Y, p)K(G)(x, y) = G(1, y
1− p

1− px
) new

JX ∼ Poisson(λY )K(G)(x, y) = G(1, yeλ(x−1)) new

16



Semantics of Conditioning (new)

JobserveX = cK(G)(x, y)

= E[xXyY [X = c] ]

= xcE[xX−cyY [X = c] ]

=
xc

c!
E
[
X(X − 1) . . . (X − c+ 1)xX−c|x=0 · yY · [X = c]

]
=

xc

c!

(
∂c

∂xc
E[xXyY ]

) ∣∣∣∣
x=0

=
xc

c!

∂c

∂xc
G(0, y)

Observing a value c requires evaluating the c-th derivative of the
generating function!

17



Semantics of Conditioning (new)

JobserveX = cK(G)(x, y)

= E[xXyY [X = c] ]

= xcE[xX−cyY [X = c] ]

=
xc

c!
E
[
X(X − 1) . . . (X − c+ 1)xX−c|x=0 · yY · [X = c]

]
=

xc

c!

(
∂c

∂xc
E[xXyY ]

) ∣∣∣∣
x=0

=
xc

c!

∂c

∂xc
G(0, y)

Observing a value c requires evaluating the c-th derivative of the
generating function!

17



Semantics of Normalization [new]

Total probability mass:

E[1] = E[1X1Y ] = G(1, 1).

So to normalize a subprogram P :

Jnormalize {P}K(G)(x, y) =
G(1, 1)

JP K(G)(1, 1)
JP K(G).

18



Semantics of Normalization [new]

Total probability mass:

E[1] = E[1X1Y ] = G(1, 1).

So to normalize a subprogram P :

Jnormalize {P}K(G)(x, y) =
G(1, 1)

JP K(G)(1, 1)
JP K(G).

18



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.
▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).
▶ Sampling Binomial:

C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).
▶ Observing Y = 1: D(x, y) = 1

1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.

▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).
▶ Sampling Binomial:

C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).
▶ Observing Y = 1: D(x, y) = 1

1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.
▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).

▶ Sampling Binomial:
C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).

▶ Observing Y = 1: D(x, y) = 1
1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.
▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).
▶ Sampling Binomial:

C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).

▶ Observing Y = 1: D(x, y) = 1
1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.
▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).
▶ Sampling Binomial:

C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).
▶ Observing Y = 1: D(x, y) = 1

1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1}

▶ A(x, y) = E[x0y0] = 1.
▶ Sampling Poisson: B(x, y) = A(1, y)e10(x−1) = e10(x−1).
▶ Sampling Binomial:

C(x, y) = B(x(0.2y + 0.8), 1) = exp(10(x(0.2y + 0.8)− 1)).
▶ Observing Y = 1: D(x, y) = 1

1!
y ∂

∂y
C(x, 0) = 2xye8x−10.

▶ Normalizing: E(x, y) = A(1,1)
D(1,1)

D(x, y) = D(x,y)
D(1,1)

= xye8x−8.

19



Extracting information from the generating
function

E(x, y) = xe8x−8y

Extracting information from that generating function:

▶ P[X = 10] = 1
10!

∂10

∂x10E(0, 1) = 1048576
2835

e−8

▶ E[X] = ∂
∂x
E(1, 1) = 9

▶ The program

X ∼ Poisson(8);X := X + 1;Y = 1

has the same GF G(x, y) = xe8x−8y!

20



Extracting information from the generating
function

E(x, y) = xe8x−8y

Extracting information from that generating function:
▶ P[X = 10] = 1

10!
∂10

∂x10E(0, 1) = 1048576
2835

e−8

▶ E[X] = ∂
∂x
E(1, 1) = 9

▶ The program

X ∼ Poisson(8);X := X + 1;Y = 1

has the same GF G(x, y) = xe8x−8y!

20



Extracting information from the generating
function

E(x, y) = xe8x−8y

Extracting information from that generating function:
▶ P[X = 10] = 1

10!
∂10

∂x10E(0, 1) = 1048576
2835

e−8

▶ E[X] = ∂
∂x
E(1, 1) = 9

▶ The program

X ∼ Poisson(8);X := X + 1;Y = 1

has the same GF G(x, y) = xe8x−8y!

20



Extracting information from the generating
function

E(x, y) = xe8x−8y

Extracting information from that generating function:
▶ P[X = 10] = 1

10!
∂10

∂x10E(0, 1) = 1048576
2835

e−8

▶ E[X] = ∂
∂x
E(1, 1) = 9

▶ The program

X ∼ Poisson(8);X := X + 1;Y = 1

has the same GF G(x, y) = xe8x−8y!

20



Example 2: Population modeling (HMM)

Modeling animal populations [Winner et al., NeurIPS 2016]:

population := 0;

arrivals ∼ Poisson(λ);

survivors ∼ Binomial(population, δ);

population := arrivals+ survivors;

observed ∼ Binomial(population, ρ);

observe observed = . . . ;

...

21



Example 3: Bayesian change point analysis
From the PyMC3 tutorial:
▶ number of coal mining disasters dt over the last 100 years
▶ reason to believe that the rate has changed
▶ model as Poisson distribution with two different rates.

switchpoint ∼ Uniform(0, 100);

λ1 ∼;

λ2 ∼;

for t ∈ {0, . . . , 100} {
if switchpoint ≤ t {obs ∼ Poisson(λ2)} else {obs ∼ Poisson(λ1)}
observe obs = dt

}

22



Example 3: Bayesian change point analysis
From the PyMC3 tutorial:
▶ number of coal mining disasters dt over the last 100 years
▶ reason to believe that the rate has changed
▶ model as Poisson distribution with two different rates.

switchpoint ∼ Uniform(0, 100);

λ1 ∼ Exponential(1);

λ2 ∼ Exponential(1);

for t ∈ {0, . . . , 100} {
if switchpoint ≤ t {obs ∼ Poisson(λ2)} else {obs ∼ Poisson(λ1)}
observe obs = dt

}

22



Example 3: Bayesian change point analysis
From the PyMC3 tutorial:
▶ number of coal mining disasters dt over the last 100 years
▶ reason to believe that the rate has changed
▶ model as Poisson distribution with two different rates.

switchpoint ∼ Uniform(0, 100);

λ1 ∼ Geometric(0.2);

λ2 ∼ Geometric(0.2);

for t ∈ {0, . . . , 100} {
if switchpoint ≤ t {obs ∼ Poisson(λ2)} else {obs ∼ Poisson(λ1)}
observe obs = dt

}

22



Implementation – Lessons
I implemented the semantics in Rust.

▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.

▶ Existing autodiff frameworks focus on 1st & 2nd derivative,
very slow for higher order

▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order

▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow

▶ Maximize sharing of subexpressions in the computation
graph

▶ Computing directly with Taylor expansions is more efficient
than autodiff (100x speedup)

Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph

▶ Computing directly with Taylor expansions is more efficient
than autodiff (100x speedup)

Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)

Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:

▶ Size of the generating function can grow exponentially with
the constants in the program.

▶ Heavy use of conditionals can lead to path explosion (but not
common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.

▶ Heavy use of conditionals can lead to path explosion (but not
common in probabilistic models).

23



Implementation – Lessons
I implemented the semantics in Rust.
▶ Computation of derivatives is the bottleneck.
▶ Existing autodiff frameworks focus on 1st & 2nd derivative,

very slow for higher order
▶ Manual implementation of higher-order derivatives is still slow
▶ Maximize sharing of subexpressions in the computation

graph
▶ Computing directly with Taylor expansions is more efficient

than autodiff (100x speedup)
Exponential blowup:
▶ Size of the generating function can grow exponentially with

the constants in the program.
▶ Heavy use of conditionals can lead to path explosion (but not

common in probabilistic models).
23



Demo of implementation

24



Limitations

Language features:
▶ only affine functions (e.g. no X2)
▶ only comparisons between variables and constants (e.g. no

X = Y )
▶ only discrete distributions

Performance:
▶ worst-case exponential in the constants appearing in the

program
▶ But works well for some models.
▶ Path explosion with many if statements.

25



Limitations

Language features:
▶ only affine functions (e.g. no X2)
▶ only comparisons between variables and constants (e.g. no

X = Y )
▶ only discrete distributions

Performance:
▶ worst-case exponential in the constants appearing in the

program
▶ But works well for some models.
▶ Path explosion with many if statements.

25



Future Work

▶ Extensions to loops and recursion (lower bounds should be
easy)

▶ Extension to a higher-order functional language

26



Generating Functions – Summary
▶ GFs are a finite closed-form representation for infinite

distributions.
▶ Probability mass and moments can be extracted

mechanically from GFs.
▶ No computer algebra needed.
▶ Needed: autodiff/Taylor expansion.
▶ Supports many language features: affine transformations,

discrete distributions (even with random parameters),
conditionals, conditioning, nested inference.

▶ Practical examples: population modeling & Bayesian change
point analysis.

▶ Implementation promising for practical probabilistic programs.
▶ Limitations: exponential blowup.

27



Backup slides

28



Why only discrete distributions?

▶ P[X = n] is uninteresting for continuous distribution (always
zero)

▶ reconstructing the density function from the factorial moment
generating function requires solving integrals

▶ the factorial moment generating function does not exist for all
distributions (e.g. Cauchy distribution)

▶ Observations from continuous distributions cannot be
expressed as conditioning on an event (instead it’s
multiplication by the probability density function).

29


