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An Inference Problem
▶ Your coworker gets 10 calls per week on average.
▶ 20% of calls are scams.
▶ At the end of the week, your coworker got only 1 scam call.

How many calls did they get?

Probabilistic program

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1
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Tools for Exact Inference

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

observeY = 1

Dice [Holtzen et al. 2020]

✗ Only supports finite discrete distributions.

SPPL [Saad et al. 2021]

✗ Parameters of distributions must have fi-
nite support.

PSI [Gehr et al. 2016]

✗ Outputs a symbolic expression involving
infinite sums.
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Infinite Support

X ∼ Poisson(10)

Y ∼ Binomial(X, 0.2)

P[Y = 9] =
∞∑
x=0

P[X = x]P[Y = 9 | X = x]

Not computable exactly using probability mass functions!
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A probabilistic language
Fixed number of variables X1, . . . , Xn, taking values in N.

▶ Affine transform: Xi := aXj + bXk + c
(where a, b, c ∈ N)

▶ Branching: ifXi = c {P1} else {P2}
▶ Sampling: Xi ∼ D

D ∈ {Bernoulli(p),Binomial(Xk, p),

Geometric(p),Poisson(λ ·Xk)}.


Klinkenberg
et al. 2020

▶ Conditioning: observeXi = c

▶ Nested inference: normalize {P}

Our contribution

⇝ can express real-world models, e.g. population dynamics &
change point models
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Probability Generating Functions (PGFs)
Generating function of X ∼ D (supported on N):

pgfX(x) = E[xX ] (discrete & continuous X)

=
∞∑
n=0

pnx
n (only discrete X)

where pn = P[X = n]

This infinite sum can often be expressed in closed form!

D pgfD(x)
Binomial(n, p) (px+ 1− p)n

Poisson(λ) eλ(x−1)
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Generating Function Semantics

Represent the distribution over states as a generating
function G.

Transformer semantics: G︸︷︷︸
distribution before

command C−−−−−−→ JCK(G)︸ ︷︷ ︸
distribution after C

Closed form is preserved for our language!

To evaluate G, no computer algebra is needed, just automatic
differentiation.
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Semantics of Conditioning

JobserveX = cK(G)(x) =
G(c)(0)

c!
· xc

keeps only the term with xc in the power series.

Observations are expensive!

observeX = 100 requires evaluating the 100th derivative!
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Extracting information from PGFs

Suppose X has generating function G(x) =
∑

n∈N pnx
n.

▶ Then the pn are the Taylor coefficients at x = 0, so

P [X = n] = pn =
G(n)(0)

n!
.

▶ Then the expected value is: E[X] = G′(1).
▶ Then the variance and higher moments can be expressed

with higher derivatives G(n)(1).
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Example

normalize {X ∼ Poisson(10);Y ∼ Binomial(X, 0.2); observeY = 1; }

1
JX∼Poisson(10)K−−−−−−−−−−→ exp(10(x− 1))

JY∼Binomial(X,0.2)K−−−−−−−−−−−→ exp(10(x(0.2y + 0.8) − 1))
JobserveY=1K−−−−−−−−→ y ·

(
∂
∂y

exp(10(x(0.2y + 0.8)− 1))
)∣∣∣

y=0

= 2xye8x−10

Jnormalize {}K−−−−−−−→ 1
2e−2 2xye

8x−10 = xye8x−8

Extracting information:

▶ P[X = 10] = 1
10!

∂10

∂x10xye
8x−8

∣∣∣
x=0,y=1

= 1048576
2835

e−8

▶ E[X] = ∂
∂x
xye8x−8

∣∣
x=1,y=1

= 9
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Demo (population model)
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Implementation

▶ Computation of derivatives is the bottleneck.
▶ We avoid computer algebra in favor of automatic

differentiation.
▶ Existing autodiff frameworks very slow for higher-order

derivatives
▶ Manual implementation of autodiff is faster
▶ Computing directly with Taylor expansions is even better
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Limitations

Language features:
▶ only affine functions
▶ only comparisons X = c (e.g. no X = Y )
▶ only discrete distributions
▶ no loops/recursion

Performance:
▶ GFs can grow exponentially with constants in the program
▶ worst-case exponential time
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Summary

Generating functions represent distributions with
infinite support compactly.

They are a powerful tool for exact inference in
probabilistic programming.
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