Exact Bayesian Inference on Discrete Models via Probability Generating Functions: A Probabilistic Programming Approach

Fabian ZaiserAndrzej S. Murawski

C.-H. Luke Ong

NeurIPS 2023

Bayesian statistics

- Successful framework for reasoning under uncertainty
- Bayes' law: prior beliefs & observations → posterior beliefs
- Inferring posterior distributions is a key challenge
- Analytical solutions are hard to find
- Approximate methods used in practice
 - Markov chain Monte Carlo (MCMC)
 - Variational Inference (VI)

Our work:

Exact inference is possible for many discrete models!

Contributions

Exact inference is possible for a large class of **discrete** models even with infinite support

- in particular, **time series** models of count data
- competitive with Monte-Carlo methods on a range of benchmarks
- often faster than existing exact methods (when those apply)

Discrete Bayesian Inference Problem with possibly infinite support

specified as

Example: Animal population

- You're a biologist trying to estimate the size of an animal population
- You have a Poisson(20) prior for the population size
- You have a chance of 10% to see each animal
- You observe 2 animals

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2;
$$P[X = x | Y = 2] = \frac{P[X = x] \cdot P[Y = 2 | X = x]}{P[Y = 2]}$$

Infinite support

X ~ Poisson(20); Y ~ Binomial(X, 0.1); observe Y = 2

$$\mathbb{P}[Y=2] = \sum_{x=0}^{\infty} \mathbb{P}[Y=2 \mid X=x] \cdot \mathbb{P}[X=x]$$
$$= \sum_{x=0}^{\infty} \text{Binomial}(2; x, 0.1) \cdot \text{Poisson}(x; 20)$$

Exact Inference Tools

X ~ Poisson(20); Y ~ Binomial(X, 0.1); observe Y = 2

Dice [Holtzen et al. 2020]

X only supports finite discrete distributions

Probability Generating Functions

- Generating function of a random variable X is $G(t) \coloneqq \mathbb{E}[t^X]$
- **Discrete** case: $G(t) = \sum_{k=1}^{\infty} \mathbb{P}[X = k] \cdot t^k$
- Multivariate case: $G(t_1, ..., t_n) \coloneqq \mathbb{E}[t_1^{X_1} \cdots t_n^{X_n}]$
- Closed form for many distributions and operations
 - Marginalizing out X_i : substituting 1 for t_i

•

Bayes' rule: $\frac{G(t_1,,t_n)}{G(1-1)}$	Distribution	Generating function
0(1,,1)	Binomial(<i>n</i> , <i>p</i>)	$(1-p+pt)^n$
	Poisson(λ)	$e^{\lambda(t-1)}$
	Binomial(X, p)	G(1-p+pt)

Probabilistic Programming Language

Flexible model specification:

- continuous & discrete priors
- stochastic branching
- affine transformations
- discrete observations

```
population ~ Poisson(100);
disaster ~ Bernoulli(0.1);
```

```
if disaster = 1 {
   population ~ Binomial(population, 0.8);
} else {
   offspring ~ Poisson(10);
   population += offspring;
}
observe 9 ~ Binomial(population, 0.1);
```

return population;

Translation to Generating Functions

- Generating function represents the distribution of the program variables
- Start with $G(t_1, \dots, t_n) = 1$
- Each program statement transforms the generating function
- Our programming language ensures a closed form for the generating function
- Can extract probability masses: $\mathbb{P}[X = k] = \frac{G^{(k)}(0)}{k!}$
- Can extract **moments**: $\mathbb{E}[X] = G'(1)$

Running time

- Observing 100 corresponds to computing a 100th derivative!
- Symbolic computation would grow exponentially
- Instead: only evaluate the derivatives
- ightarrow automatic differentiation via Taylor polynomials
- Running time is $O(s \cdot d^{n+3})$ where
 - *s*: #statements in the program
 - *d*: sum of all observed values
 - *n*: #variables in the program

Limitations

- Performance
 - Exact Bayesian inference is PSPACE-hard already for finite distributions
 - Running time of our method is exponential in #variables
 - But #variables can often be kept low by re-using variables (e.g. time series models)
- Expressiveness of the programming language
 - only affine operations supported
 - not all distributions support variables as parameters
 - no continuous observations (only continuous priors)
- No posterior densities (only posterior masses & moments)

Comparison with Exact Inference Methods

Benchmarks with bounded support

Tool	Genfer (FP)	Dice (FP)	Genfer (Q)	Dice (\mathbb{Q})	Prodigy	PSI
alarm (F)	0.0005s	0.0067s	0.0012s	0.0066s	0.011s	0.0053s
clickGraph (C)	0.11s	unsupported	3.4 s	unsupported	unsupported	46s
clinicalTrial (C)	150s	unsupported	1117s	unsupported	unsupported	timeout
clinicalTrial2 (C)	0.0024s	unsupported	0.031s	unsupported	unsupported	0.46s
digitRecognition (F)	0.021s	0.83s	0.11s	2.7s	31s	146s
evidence1 (F)	0.0002s	0.0057s	0.0003s	0.0056s	0.0030s	0.0016s
evidence2 (F)	0.0002s	0.0056s	0.0004 s	0.0057s	0.0032s	0.0018s
grass (F)	0.0008s	0.0067s	0.0044 s	0.0067s	0.019s	0.014s
murderMystery (F)	0.0002s	0.0055s	0.0003s	0.0057s	0.0028s	0.0021s
noisyOr (F)	0.0016s	0.0085s	0.019s	0.0088 s	0.21s	0.055s
twoCoins (F)	0.0002s	0.0054s	0.0003s	0.0057s	0.0032s	0.0017s

Comparison with Monte-Carlo Inference

Modified Population Model

Two-type population model

Based on time series models with infinite support in Winner et al. (NeurIPS 2016)

Comparison with Monte-Carlo Inference 2

No exact solutions known before!

Conclusion

New framework for **exact Bayesian inference**

- discrete models even with infinite support
- competitive performance on a range of models
- automated in Genfer

Discrete Bayesian Inference Problem with possibly infinite support

specified as

Probabilistic Program translated to

Probability Generating Function

Backup Slides

Related Work on Generating Functions

	general models?	conditioning?	real-world examples?
Winner et al. (NeurIPS 2016)	×		
Winner et al. (ICML 2017)	×		
Klinkenberg et al. (LOPSTR 2020)		×	×
Chen et al. (CAV 2022)		×	×
Klinkenberg et al. (arXiv 2023)			×
Our work			

Generating Functions: Example

$$1 \xrightarrow{X \sim \text{Poisson}(20)} e^{20(x-1)} \qquad X \sim \text{Poisson}(20);$$

$$Y \sim \text{Binomial}(X, 0.1) \rightarrow e^{20(x(0.1y+0.9)-1)} \rightarrow e^{20(x(0.1y+0.9)-1)} \qquad X \sim \text{Poisson}(20);$$

$$Y \sim \text{Binomial}(X, 0.1); \qquad \text{observe } Y = 2$$

$$Y \sim \text{Binomial}(X, 0.1); \qquad \text{observe } Y = 2$$

$$Y \sim \text{Binomial}(X, 0.1); \qquad \text{observe } Y = 2$$

Posterior probability: $\mathbb{P}[X = 10] = \frac{1}{10!} \frac{\partial^{10}G(0,1)}{\partial x^{10}} = 991796451840e^{-18}$
Posterior expectation: $\mathbb{E}[X] = \frac{\partial G(1,1)}{\partial x} = 20$