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Bayesian statistics

 Successful framework for reasoning under uncertainty

* Bayes’ law: prior beliefs & observations - posterior beliefs
* Inferring posterior distributions is a key challenge

e Analytical solutions are hard to find

* Approximate methods used in practice
* Markov chain Monte Carlo (MCMC)
 Variational Inference (VI)

Our work:
Exact inference is possible for many discrete models!



Contributions

specified as

Exact inference is possible for a
large class of discrete models
even with infinite support

translated to

* in particular, time series models
of count data

* competitive with Monte-Carlo
methods on a range of
benchmarks

automatic
differentiation

GENFER (our tool)

 often faster than existing exact
methods (when those apply)




Example: Animal population

* You're a biologist trying to estimate the size of an animal population
* You have a Poisson(20) prior for the population size
* You have a chance of 10% to see each animal

* You observe 2 animals

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2; PIX=x]|-PlY=2|X=

P[X=x|Y=2]=



Infinite support
X ~ Poisson(20);

Y ~ Binomial(X, 0.1);
observe Y = 2

IP[Y=2]:ZIP[Y=2|X=x]-IP>[X=x]
00 x=0

= z Binomial(2; x, 0.1) - Poisson(x; 20)

x=0



X ~ Poisson(20):
Exact Inference Tools Y ~ Binomial(X, 0.1):

observe Y = 2
wh

Dice [Holtzen et al. 2020]

Z I_I P L X parameters of distributions must have finite support

SPPL [Saad et al. 2021]

X only supports finite discrete distributions

PSI

SOLVER X outputs a symbolic expression with infinite sums
PSI [Gehr et al. 2016]



Probability Generating Functions

* Generating function of a random variable X is G(t) := E[t*]
e Discrete case: G(t) = Yo P[X = k] - t¥
* Multivariate case: G(t, ..., t,,) = ]E[t])_(1 t,,f"]

* Closed form for many distributions and operations
* Marginalizing out X;: substituting 1 for t;
+ Bayes’ rule: £
Binomial(n, p) (1—p+pt)"
Poisson (1) A=
Binomial(X,p) G(1—p + pt)




Probabilistic Programming Language -

specified

Flexible model
specification:

e continuous & discrete
priors

* stochastic branching
e affine transformations
e discrete observations

as

population ~ Poisson(100); -
disaster ~ Bernoulli(0.1);

if disaster = 1 {

population ~ Binomial(population, 0.8);
y else {

offspring ~ Poisson(10);

population += offspring;

}

observe 9 ~ Binomial(population, 0.1);

return population;



Translation to Generating Functions

* Generating function represents the distribution of_

the program variables translated
to
e Start with G(¢tq, ..., t,;) =1

e Each program statement transforms the _
generating function

e Our programming language ensures a closed form Cutomatic
for the generating function

(k)
 Can extract probability masses: P|X = k] = c k'(o)
* Can extract moments: E[X] = G'(1)




Running time

* Observing 100 corresponds to computing a 100t" derivative!
* Symbolic computation would grow exponentially

* Instead: only evaluate the derivatives

* - automatic differentiation via Taylor polynomials

* Running time is O(s - d™*3) where
e s:#statementsin the program
e d: sum of all observed values
e n: #variables in the program



Limitations

* Performance
e Exact Bayesian inference is PSPACE-hard already for finite distributions
* Running time of our method is exponential in #variables
e But #variables can often be kept low by re-using variables (e.g. time series
models)
* Expressiveness of the programming language
* only affine operations supported
* not all distributions support variables as parameters
* no continuous observations (only continuous priors)

* No posterior densities (only posterior masses & moments)



Comparison with Exact Inference Methods

Benchmarks with bounded support

Tool Genfer (FP) Dice (FP) | Genfer (Q) Dice (Q) Prodigy PSI
alarm (F) 0.0005s 0.0067s 0.0012s 0.0066s 0.011s 0.0053s
clickGraph (C) 0.11s unsupported 3.4s unsupported unsupported 46s
clinicalTrial (C) 150s unsupported 1117s unsupported unsupported timeout
clinicalTrial2 (C) 0.0024s unsupported 0.031s unsupported unsupported 0.46s
digitRecognition (F) 0.021s 0.83s 0.11s 2.7s 31s 146s
evidencel (F) 0.0002s 0.0057s 0.0003s 0.0056s 0.0030s 0.0016s
evidence2 (F) 0.0002s 0.0056s 0.0004s 0.0057s 0.0032s 0.0018s
grass (F) 0.0008s 0.0067s 0.0044s 0.0067s 0.019s 0.014s
murderMystery (F) 0.0002s 0.0055s 0.0003s 0.0057s 0.0028s 0.0021s
noisyOr (F) 0.0016s 0.0085s 0.019s 0.0088s 0.21s  0.055s
twoCoins (F) 0.0002s 0.0054s 0.0003s 0.0057s 0.0032s 0.0017s




Comparison with Monte-Carlo Inference
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Comparison with Monte-Carlo Inference 2
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Conclusion

New framework for exact
Bayesian inference

e discrete models even with
infinite support

e competitive performance on a
range of models

e automated in Genfer

GitHub: H

specified as

translated to

automatic
differentiation

GENFER (our tool)
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Related Work on Generating Functions

_ general models? condltlonlng? real-world examples?

Winner et al. (NeurlPS 2016)

Winner et al. (ICML 2017)
Klinkenberg et al. (LOPSTR 2020)
Chen et al. (CAV 2022)
Klinkenberg et al. (arXiv 2023)
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Our work



Generating Functions: Example

1X P01sson(20) 20(x 1)

Y~Binomial(X, 0. 1)

20(x(0 1y+0.9)—1)

observe Y= 2

2X2y2€18x 20

.'X' y 618(x 1) — G(X y)

normalize

Posterior probability: P[X = 10] =
9G(1,1)

1 0196G(0,1)

X ~ Poisson(20):
Y ~ Binomial(X, 0.1);
observe Y = 2

= 991796451840e~18

Posterior expectation: E[X] =

0x

axlo

= 20



