
Exact Bayesian Inference
on Discrete Models

via Probability Generating Functions:
A Probabilistic Programming Approach

Fabian Zaiser Andrzej S. Murawski C.-H. Luke Ong

NeurIPS 2023

Bayesian statistics

• Successful framework for reasoning under uncertainty
• Bayes’ law: prior beliefs & observations → posterior beliefs
• Inferring posterior distributions is a key challenge
• Analytical solutions are hard to find
• Approximate methods used in practice
• Markov chain Monte Carlo (MCMC)
• Variational Inference (VI)

Our work:
Exact inference is possible for many discrete models!

Contributions

Exact inference is possible for a
large class of discrete models
even with infinite support
• in particular, time series models

of count data
• competitive with Monte-Carlo

methods on a range of
benchmarks
• often faster than existing exact

methods (when those apply)

G
EN

FE
R

(o
ur

 to
ol

)

Discrete Bayesian Inference Problem
with possibly infinite support

Probabilistic Program

specified as

Probability Generating Function

translated to

Posterior
Probability

Masses

Posterior
Moments

automatic
differentiation

Example: Animal population

• You’re a biologist trying to estimate the size of an animal population
• You have a Poisson(20) prior for the population size
• You have a chance of 10% to see each animal
• You observe 2 animals

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2;

𝑃 𝑋 = 𝑥	 𝑌 = 2] =
𝑃 𝑋 = 𝑥) 𝑃 𝑌 = 2	 𝑋 = 𝑥]

𝑃[𝑌 = 2]

Infinite support

ℙ 𝑌 = 2 = ,
!"#

$

ℙ 𝑌 = 2 𝑋 = 𝑥 ⋅ ℙ 𝑋 = 𝑥

= ,
!"#

$

Binomial 2; 𝑥, 0.1 ⋅ Poisson(𝑥; 20)

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2

Exact Inference Tools

❌ only supports finite discrete distributions

❌ parameters of distributions must have finite support

❌ outputs a symbolic expression with infinite sums

Dice [Holtzen et al. 2020]

SPPL [Saad et al. 2021]

PSI [Gehr et al. 2016]

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2

Probability Generating Functions

• Generating function of a random variable 𝑋 is 𝐺 𝑡 ≔ 𝔼 𝑡%

• Discrete case: 𝐺 𝑡 = ∑&"'$ ℙ 𝑋 = 𝑘) 𝑡&

• Multivariate case: 𝐺 𝑡', … , 𝑡(≔ 𝔼[𝑡'
%!⋯𝑡(

%"]
• Closed form for many distributions and operations
• Marginalizing out 𝑋!: substituting 1 for 𝑡!
• Bayes’ rule: "($!,…,$")"((,…,()

Distribution Generating function
Binomial(𝑛, 𝑝) 1 − 𝑝 + 𝑝𝑡)

Poisson(𝜆) 𝑒*($+()

Binomial(𝑋, 𝑝) 𝐺(1 − 𝑝 + 𝑝𝑡)

Probabilistic Programming Language

Flexible model
specification:
• continuous & discrete

priors
• stochastic branching
• affine transformations
• discrete observations

population ~ Poisson(100);
disaster ~ Bernoulli(0.1);

if disaster = 1 {
population ~ Binomial(population, 0.8);

} else {
offspring ~ Poisson(10);
population += offspring;

}

observe 9 ~ Binomial(population, 0.1);

return population;

Discrete Bayesian
Inference Problem

Probabilistic Program

specified
as

Translation to Generating Functions

• Generating function represents the distribution of
the program variables
• Start with 𝐺 𝑡', … , 𝑡(= 1
• Each program statement transforms the

generating function
• Our programming language ensures a closed form

for the generating function

• Can extract probability masses: ℙ 𝑋 = 𝑘 =) # (#)
&!

• Can extract moments: 𝔼 𝑋 = 𝐺′(1)

Probabilistic Program

Probability Generating
Function

translated
to

Posterior
Probability

Masses

Posterior
Moments

automatic
differentiation

Running time

• Observing 100 corresponds to computing a 100th derivative!
• Symbolic computation would grow exponentially
• Instead: only evaluate the derivatives
• → automatic differentiation via Taylor polynomials
• Running time is 𝑂 𝑠) 𝑑(-. where
• 𝑠: #statements in the program
• 𝑑: sum of all observed values
• 𝑛: #variables in the program

Limitations

• Performance
• Exact Bayesian inference is PSPACE-hard already for finite distributions
• Running time of our method is exponential in #variables
• But #variables can often be kept low by re-using variables (e.g. time series

models)

• Expressiveness of the programming language
• only affine operations supported
• not all distributions support variables as parameters
• no continuous observations (only continuous priors)

• No posterior densities (only posterior masses & moments)

Comparison with Exact Inference Methods
Benchmarks with bounded support

Comparison with Monte-Carlo Inference

Original Population Model Modified Population Model Two-type population model

��� ��� ��� ��� 	�� 	��

��������� �

����

����

����

����

��	�

��	�

��
�

��
�

�
�
�
�
�
��
�
�

�

�!�

��

������

���

�����

���

���

� � 	

��������� �

���

���

��	

��

���

�
�
�
�
�
��
�
�

�

�!�

��

������

���

�����

���

���

� � 	
 � �

���������!�

���

���

��	

��

���

�

�

��
�
�
�
�

�" !

��

����

���

�����!

���

��

Based on time series models with infinite support
in Winner et al. (NeurIPS 2016)

Comparison with Monte-Carlo Inference 2

� � �� �� 	� 	�

���������"�

���

��	

��

���

��

�
!
!

!
��
�
�
�
�

 #!"

��

������

���

�����"

���

���

� �� 	�
� ��

���������"�

���

��	

���

���

��

���

�
!
!

!
��
�
�
�
�

 #!"

��

������

���

�����"

���

���

Switchpoint Model
(conditioned on 109 data points)

Mixture Model
(conditioned on 109 data points)

Hidden Markov Model
(conditioned on 30 data points)

No exact solutions known before!

� 	
 � � �� �	

���������!�

���

��	

��

���

���

���

�

�

��
�
�
�
�

�" !

��

����

���

�����!

���

��

Conclusion

New framework for exact
Bayesian inference
• discrete models even with

infinite support
• competitive performance on a

range of models
• automated in Genfer

G
EN

FE
R

(o
ur

 to
ol

)

Discrete Bayesian Inference Problem
with possibly infinite support

Probabilistic Program

specified as

Probability Generating Function

translated to

Posterior
Probability

Masses

Posterior
Moments

automatic
differentiation

Paper: GitHub:

Backup Slides

Related Work on Generating Functions

general models? conditioning? real-world examples?

Winner et al. (NeurIPS 2016) ❌ ✅ ✅

Winner et al. (ICML 2017) ❌ ✅ ✅

Klinkenberg et al. (LOPSTR 2020) ✅ ❌ ❌

Chen et al. (CAV 2022) ✅ ❌ ❌

Klinkenberg et al. (arXiv 2023) ✅ ✅ ❌

Our work ✅ ✅ ✅

Generating Functions: Example

1
%~0123314(5#)

𝑒5#(!6')
7~824192:;(%, #.')

𝑒5#(! #.'>-#.? 6')
1@3ABCA 7"5

2𝑥5𝑦5𝑒'D!65#
41B9:;2EA

𝑥5𝑦5𝑒'D(!6') =:𝐺(𝑥, 𝑦)

Posterior probability: ℙ 𝑋 = 10 = '
'#!

F!$)(#,')
F!!$

= 991796451840𝑒6'D

Posterior expectation: 𝔼 𝑋 = F)(',')
F!

= 20

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2

