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Bayesian statistics

• Successful framework for reasoning under uncertainty
• Bayes’ law: prior beliefs & observations → posterior beliefs
• Inferring posterior distributions is a key challenge
• Analytical solutions are hard to find
• Approximate methods used in practice
• Markov chain Monte Carlo (MCMC)
• Variational Inference (VI)

Our work:
Exact inference is possible for many discrete models!



Contributions

Exact inference is possible for a 
large class of discrete models 
even with infinite support
• in particular, time series models 

of count data
• competitive with Monte-Carlo 

methods on a range of 
benchmarks
• often faster than existing exact 

methods (when those apply)
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Example: Animal population

• You’re a biologist trying to estimate the size of an animal population
• You have a Poisson(20) prior for the population size
• You have a chance of 10% to see each animal
• You observe 2 animals

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2;

𝑃 𝑋 = 𝑥	 𝑌 = 2] =
𝑃 𝑋 = 𝑥 ) 𝑃 𝑌 = 2	 𝑋 = 𝑥]

𝑃[𝑌 = 2]



Infinite support

ℙ 𝑌 = 2 = ,
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ℙ 𝑌 = 2 𝑋 = 𝑥 ⋅ ℙ 𝑋 = 𝑥

= ,
!"#

$

Binomial 2; 𝑥, 0.1 ⋅ Poisson(𝑥; 20)

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2



Exact Inference Tools

❌ only supports finite discrete distributions

❌ parameters of distributions must have finite support

❌ outputs a symbolic expression with infinite sums

Dice [Holtzen et al. 2020] 

SPPL [Saad et al. 2021] 

PSI [Gehr et al. 2016] 

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2



Probability Generating Functions

• Generating function of a random variable 𝑋 is 𝐺 𝑡 ≔ 𝔼 𝑡%

• Discrete case: 𝐺 𝑡 = ∑&"'$ ℙ 𝑋 = 𝑘 ) 𝑡&

• Multivariate case: 𝐺 𝑡', … , 𝑡( ≔ 𝔼[𝑡'
%!⋯𝑡(

%"]
• Closed form for many distributions and operations
• Marginalizing out 𝑋!: substituting 1 for 𝑡!
• Bayes’ rule: "($!,…,$")"((,…,()

Distribution Generating function
Binomial(𝑛, 𝑝) 1 − 𝑝 + 𝑝𝑡 )

Poisson(𝜆) 𝑒*($+()

Binomial(𝑋, 𝑝) 𝐺(1 − 𝑝 + 𝑝𝑡)



Probabilistic Programming Language

Flexible model 
specification:
• continuous & discrete 

priors
• stochastic branching
• affine transformations
• discrete observations

population ~ Poisson(100);
disaster ~ Bernoulli(0.1);

if disaster = 1 {
population ~ Binomial(population, 0.8);

} else {
offspring ~ Poisson(10);
population += offspring;

}

observe 9 ~ Binomial(population, 0.1);

return population;

Discrete Bayesian 
Inference Problem

Probabilistic Program

specified 
as



Translation to Generating Functions

• Generating function represents the distribution of 
the program variables
• Start with 𝐺 𝑡', … , 𝑡( = 1
• Each program statement transforms the 

generating function
• Our programming language ensures a closed form

for the generating function

• Can extract probability masses: ℙ 𝑋 = 𝑘 = ) # (#)
&!

• Can extract moments: 𝔼 𝑋 = 𝐺′(1)

Probabilistic Program

Probability Generating 
Function

translated 
to

Posterior 
Probability 
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automatic 
differentiation



Running time

• Observing 100 corresponds to computing a 100th derivative!
• Symbolic computation would grow exponentially
• Instead: only evaluate the derivatives
• → automatic differentiation via Taylor polynomials
• Running time is 𝑂 𝑠 ) 𝑑(-. where
• 𝑠: #statements in the program
• 𝑑: sum of all observed values
• 𝑛: #variables in the program



Limitations

• Performance
• Exact Bayesian inference is PSPACE-hard already for finite distributions
• Running time of our method is exponential in #variables
• But #variables can often be kept low by re-using variables (e.g. time series 

models)

• Expressiveness of the programming language
• only affine operations supported
• not all distributions support variables as parameters
• no continuous observations (only continuous priors)

• No posterior densities (only posterior masses & moments)



Comparison with Exact Inference Methods
Benchmarks with bounded support



Comparison with Monte-Carlo Inference

Original Population Model Modified Population Model Two-type population model
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Based on time series models with infinite support
in Winner et al. (NeurIPS 2016)



Comparison with Monte-Carlo Inference 2
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Switchpoint Model
(conditioned on 109 data points)

Mixture Model
(conditioned on 109 data points)

Hidden Markov Model
(conditioned on 30 data points)

No exact solutions known before!
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Conclusion

New framework for exact 
Bayesian inference
• discrete models even with

infinite support
• competitive performance on a 

range of models
• automated in Genfer

G
EN

FE
R 

(o
ur

 to
ol

)

Discrete Bayesian Inference Problem
with possibly infinite support

Probabilistic Program

specified as

Probability Generating Function

translated to

Posterior 
Probability 

Masses

Posterior 
Moments

automatic 
differentiation

Paper: GitHub:



Backup Slides



Related Work on Generating Functions

general models? conditioning? real-world examples?

Winner et al. (NeurIPS 2016) ❌ ✅ ✅

Winner et al. (ICML 2017) ❌ ✅ ✅

Klinkenberg et al. (LOPSTR 2020) ✅ ❌ ❌

Chen et al. (CAV 2022) ✅ ❌ ❌

Klinkenberg et al. (arXiv 2023) ✅ ✅ ❌

Our work ✅ ✅ ✅



Generating Functions: Example

1
%~0123314(5#)

𝑒5#(!6')
7~824192:;(%, #.')

𝑒5#(! #.'>-#.? 6')
1@3ABCA 7"5

2𝑥5𝑦5𝑒'D!65#
41B9:;2EA

𝑥5𝑦5𝑒'D(!6') =:𝐺(𝑥, 𝑦)

Posterior probability: ℙ 𝑋 = 10 = '
'#!

F!$)(#,')
F!!$

= 991796451840𝑒6'D

Posterior expectation: 𝔼 𝑋 = F)(',')
F!

= 20

X ~ Poisson(20);
Y ~ Binomial(X, 0.1);
observe Y = 2


