
VMC: a Dafny Library for Verified
Monte Carlo Algorithms

Fabian Zaiser* Stefan Zetzsche Jean-Baptiste Tristan

*work completed during an internship at AWS

… means generating samples from a
desired distribution

… is important:

● Cryptography
● Differential Privacy

… is hard to do correctly, e.g.

● Fisher Yates shuffle (random
permutation)

● Attacks on Differential Privacy

Probabilistic Sampling

2

Reasoning about Probabilistic Samplers is Hard

3

X ~ Geometric(3/4)
Y ~ Geometric(3/4)
Z ~ Bernoulli(5/9)
T := X + Y + Z
repeat 3 times:

F ~ Binomial(2 * T, 1/2)
if F != T:

 return 0
return 1

What is the probability
of returning 1?

1/π

Example from: Flajolet, Pelletier, Soria: On Buffon Machines and Numbers

How???

Dafny-VMC (“Verified Monte-Carlo”)

● Samplers of various distributions
● Proofs of correctness
● Implemented and verified in Dafny
● Interoperability with Java
● Work in progress (partially axiomatized)
● Open-source on Github:

https://github.com/dafny-lang/Dafny-VMC/

4

https://github.com/dafny-lang/Dafny-VMC/

Structure of Probabilistic Samplers in Dafny-VMC

1. Functional model
2. Correctness proof of the model
3. Imperative implementation (using external randomness

source)
4. Proof of correspondence between model and

implementation
5. Statistical tests

5

Focus of this talk

Randomized Functions in Dafny

● Dafny’s functions are
deterministic

● → need to get infinitely
many random bits as input

● Compute random value
and return unused bits

● “Bitstream transformers”

type Bits = nat -> bool

function CoinModel(s: Bits): (bool, Bits) {

 (s(0), (n: nat) => s(n + 1))

}

6

Compositionality

● Passing around bitstreams
is error-prone

● Joe Hurd introduced a
monad abstraction

● Small set of combinators:
Coin, Return, Bind,
While

● Can be used to model all
our samplers

type Hurd<A> = Bits -> (A, Bits)

function Coin(): Hurd<bool> {
 (s: Bits) => (s(0), (n: nat) => s(n + 1))
}

function Return<A>(a: A): Hurd<A> {
 (s: Bits) => (a, s)
}

function Bind<A, B>(
 h: Hurd<A>, f: A -> Hurd
): Hurd

function While<A>(
 cond: A -> bool,
 body: A -> Hurd<A>
): A -> Hurd<A>

7

Probability in Dafny

● Probability measure on
bitstreams (“independent
& uniformly distributed
bits”)

● Hurd proved that
bitstreams are a
probability space
(currently axiomatized)

ghost const prob: iset<Bits> -> real

ghost function probMass<A>(

 h: Hurd<A>, result: A

): real {

 prob(iset s | h(s).0 == result)

}

lemma CoinIsCorrect()

 ensures probMass(Coin(), false) == 0.5

 ensures probMass(Coin(), true) == 0.5

8
8

Bernoulli(exp(–γ)) Distribution

● Returns true with probability
exp(–γ) for γ in [0, 1]

● “Source” of irrational
probabilities

● Building block for other
samplers

method BernExp(gamma: real): bool
 # for gamma in [0,1]
 k := 0
 a := true
 while a:
 k += 1
 a := Bernoulli(gamma / k)

 return k % 2 == 1

9

Bernoulli(exp(–γ)) Distribution

method BernExp(gamma): bool
 # for gamma in [0,1]
 k := 0
 a := true
 while a:
 k += 1
 a := Bernoulli(gamma / k)

 return k % 2 == 1

10

function BernExp(gamma: real): Hurd<bool>
 requires 0.0 <= gamma <= 1.0
{
 Bind(
 While(
 (ak: (bool, nat)) => ak.0,
 (ak: (bool, nat)) =>
 var k' := ak.1 + 1;
 Bind(
 Bernoulli(gamma / k' as real),
 a' => Return((a', k'))
)
)((true, 0)),
 (ak: (bool, nat)) => Return(ak.1 % 2 == 1)
)
}

Probabilistic Loops

● Some samplers require
loops (e.g. rejection
sampling)

● Cannot sample from
Uniform{0,1,2} with
bounded number of bits

● Loops in samplers
terminate almost surely

function While<A>(

 cond: A -> bool,

 body: A -> Hurd<A>

): A -> Hurd<A> {

 (state: A) =>

 if cond(state)

 then Bind(

 body(state),

 While(cond, body))

 else Return(state)

}

Error: cannot prove termination
11

Tracking Nontermination

● We need to track
nontermination explicitly

● Change our probability
monad!

12

→ can talk about the
probability of
nontermination!

type Hurd<A> = Bits -> (A, Bits) // old
type Prob<A> = Bits -> Result<A> // new

datatype Result<A> =
| Diverging
| Result(value: A, rest: Bits)

function Coin(): Prob<bool>

function Return<A>(a: A): Prob<A>

function Bind<A, B>(
 p: Prob<A>,
 f: A -> Prob
): Prob

Probabilistic While Loops – Take 2
function WhileBounded<A>(
 fuel: nat, cond: A -> bool, body: A -> Prob<A>, init: A
): Prob<A> {
 if fuel == 0 then s => Diverging
 else if !cond(init) then Return(init)
 else Bind(
 body(init),
 state' => WhileBounded(fuel - 1, cond, body, state'))
}

13

ghost function While<A>(
 cond: A -> bool, body: A -> Prob<A>
): A -> Prob<A> {
 (init: A) => (s: Bits) =>
 if fuel: nat :|
 !WhileBounded(fuel, cond, body, init)(s).Diverging?
 then WhileBounded(fuel, cond, body, init)(s)
 else Diverging
}

While loop with
bounded fuel

Out of fuel

Does the loop terminate
for some amount of fuel?

Unbounded while loop

Normal recursion

Verifying While Loops?

● How can we prove that a
loop produces res with
probability p?

● Idea: reason about the
bounded version (via
induction)

● Take the limit fuel → ∞

lemma {:axiom} WhileProbability<A>(
 cond: A -> bool,
 body: A -> Prob<A>,
 init: A,
 res: A,
 p: real
)
 requires !cond(res)
 requires ConvergesTo(
 (fuel: nat) => probMass(
 WhileBounded(fuel,cond,body,init), res),
 p)
 ensures probMass(While(cond, body)(init), res)
 == p

14

Required formalizing some
real analysis in Dafny

Correctness Proof for Bernoulli(exp(–γ))

Can be proved with the
previous lemma and a limit
argument!

lemma BernExpCorrectness(gamma: real)

 requires 0.0 <= gamma <= 1.0

 ensures probMass(BernExp(gamma), true)

 == Exp(-gamma)

 ensures probMass(BernExp(gamma), false)

 == 1.0 - Exp(-gamma)

15

Required defining the
exponential function in Dafny

(partially axiomatized)

Dafny-VMC

● Samplers of various distributions
● Proofs of correctness
● https://github.com/dafny-lang/Dafny-VMC/

Verification of Bernoulli(exp(–γ)):

● Formalizing real analysis (limits & series)
● Probabilistic loops and nontermination

Questions?

16

https://github.com/dafny-lang/Dafny-VMC/

Backup slides

17

Current Status of VMC

18

Coin

Uniform{ 0, …, 2^k-1 }

Uniform{ 0, …, n - 1 }

Bernoulli(exp(–m/n))

Bernoulli(m/n)

DiscreteLaplace(m/n)

DiscreteGaussian(m/n)

depends on

external

verified

tested

Probability in Dafny

● σ-algebra on bitstreams
(“allowed events”)

● Probability measure on
bitstreams (“independent &
uniformly distributed bits”)

● Definition of probability spaces
● Hurd proved that bitstreams are

a probability space (currently
axiomatized)

● Can state correctness!

ghost const eventSpace :
iset<iset<Bits>>

ghost const prob: iset<Bits> -> real

ghost function probMass<A>(
 h: Hurd<A>, result: A): real {
 prob(iset s | h(s).0 == result)
}

ghost predicate IsProbSpace<A>(
 eventSpace: iset<iset<A>>,
 prob: iset<A> -> real)

lemma BitsIsProbSpace()
 ensures IsProbSpace(eventSpace, prob)

lemma CoinIsCorrect()
 ensures probMass(Coin(), false) == 0.5
 ensures probMass(Coin(), true) == 0.5

19
19

Imperative Sampler

● SampleCoin relies on an
external random source

● E.g.: Java random number
generator

● Other imperative samplers
use SampleCoin as a
primitive

trait CoinSampler {
 ghost var s: Rand.Bitstream

 method {:extern} SampleCoin()
 returns (b: bool)
 modifies this
 ensures Coin(old(s))==(b, s)

}

20

Assumption: external random source
behaves like the model!

Structure of Probabilistic Samplers in Dafny

1. Functional Model
2. Correctness proof
3. Imperative

implementation
4. Proof of

correspondence
5. Statistical tests

function Uniform(n: nat): Hurd<nat>
 requires n >= 1
{ ... }

lemma UniformCorrect(n: nat)
 ensures forall i: nat :: 0 <= i < n ==>
 probMass(Uniform(n), i) == 1.0 / n as real
{ ... }

trait UniformSampler {
 ghost var s: Bitstream

 method SampleUniform(n: nat)
 returns (i: nat)
 modifies this
 requires n >= 1
 ensures Uniform(n)(old(s))==(i, s)
 { ... }
}

method {:test} TestUniform() { ... }

21

Axiomatizations

● Measure theory
● Construction of the probability space on Bits
● Measurability and independence of probabilistic primitives
● Properties of the exponential function

○ Functional equation: exp(x)exp(y) = exp(x + y)
○ Convergence of its power series

22

Future Work: Representing Probabilistic Computations

Hurd monad:

● Pros: easy to relate imperative code and functional model
● Cons: hard to prove correctness (in particular, independence),

need to thread bitstreams through the proof

Can we use a different probability monad?

● splittable RNG?
● Giry monad?

23

