4

VMC: a Dafny Library for Verified ‘
Monte Carlo Algorithms

Fabian Zaiser* Stefan Zetzsche Jean-Baptiste Tristan

*work completed during an internship at AWS

Potential sources of bias |edit]

Care must be taken when implementing the Fisher—Yates shuffle, both in the implementation of the algorithm itself and in the generation of the random
numbers it is built on, otherwise the results may show detectable bias. A number of common sources of bias have been listed below.

Probabilistic Sampling =~ e

A common error when implementing the Fisher—Yates shuffle is to pick the random numbers from the wrong range. The flawed algorithm may appear to
work correctlv. but it will not broduce each possible bermutation with eaual probabilitv. and it mav not broduce certain permutations at all. For examole. a

<m Qn significance of the least significant bits for differential

will b

. all el privacy
.. means generating samples froma =

whict
sequ Author: llya Mironov Authors Info & Claims

desired distribution

perm
bias, CCS '12: Proceedings of the 2012 ACM conference on Computer and communications security = October 2012 « Pages 650661

. * . Perm = https://doi.org/10.1145/2382196.2382264
... IS Important: o1

of the
The Published: 16 October 2012 Publication History M) Check for updates

e Cryptography e pr—n . —
e Differential Privacy

. | ABSTRACT
eee I S h a rd to d O CO rre Ct I yl e ° g ° Doin We describe a new type of vulnerability present in many implementations of differentially private
rand mechanisms. In particular, all four publicly available general purpose systems for differentially private

fixed

o F i S h er Yate S S h u fﬂ e (ra N d om comr computations are susceptible to our attack.

lhem e . o eae
p er utat i O n) randc The vul.nerab|llty |svbased c-m |rlregular|t|es o'f floatlng—pOfnt implementations of tlj\e pr|vacy~preservmg.
I I I Laplacian mechanism. Unlike its mathematical abstraction, the textbook sampling procedure results in

() A't't a C kS O n D iffe re nt i a I P riva Cy a porous distribution over double-precision numbers that allows one to breach differential privacy with

just a few queries into the mechanism.
We propose a mitigating strategy and prove that it satisfies differential privacy under some mild

assumptions on available implementation of floating-point arithmetic.

Reasoning about Probabilistic Samplers is Hard

X ~ Geometric(3/4)
Y ~ Geometric(3/4)
Z ~ Bernoulli(5/9)
T := X + Y + Z
repeat 3 times:
F ~ Binomial(2 * T, 1/2)
if F != T:
return 0O
return 1

Example from: Flajolet, Pelletier, Soria: On Buffon Machines and Numbers

Dafny-VMC (“Verified Monte-Carlo”)

Work in progress (partially axiomatized)
Open-source on Github:
https.//github.com/dafny-lang/Dafny-VMC/

Ihmﬁ; Dafny_VMC Public

e Samplers of various distributions

e Proofs of correctness

e Implemented and verified in Dafny = () <orny-tang / Damy-vc

e Interoperability with Java > Code O lssues 11 Pullrequests 9
[

o

https://github.com/dafny-lang/Dafny-VMC/

Structure of Probabilistic Samplers in Dafny-VMC

1. Functional model .
Focus of this talk
2. Correctness proof of the model

3. Imperative implementation (using external randomness

source)
4. Proof of correspondence between model and

implementation
5. Statistical tests

Randomized Functions in Dafny

e Dafny’s functions are e
deterministic function CoinModel(s: Bits): (
e — need to get infinitely (840l , fus nat) = sin =+ 1))
many random bits as input |
e Compute random value
and return unused bits
e “Bitstream transformers”

Compositionality

type <A> = Bits -> (A, Bits)

e Passing around bitstreams

function Coin{() :

IS error-prone .) =
e Joe Hurd introduced a
. function Return<A> (a:
monad abstraction (s:) => (a, s)
e Small set of combinators: E
Coin, Return, Bind, Tneron >
While) : <

e (Can be used to model all function
cond:
our samplers

Probability in Dafny

L PrObabiIity measure on ghost const prob: <Bits> ->
bitstreams (“independent |-

<A>, result:

& uniformly distributed

bitS") s | h(s).0 == result)
e Hurd proved that
b|tStreamS are a lemma CoinIsCorrect ()
oge ensures probMass (Coin (), false) == 0.5
prObabIIIty Space ensures probMass (Coin(), true) == 0.5

(currently axiomatized)

Bernoulli(exp(-y)) Distribution

e Returns true with probability method BernExp(gamma: real): bool
eXP(—Y) for Y in [0, 1] # for gamma in [0, 1]

° uS ” . . k := 0
ource” of irrational 4 = true
probabilities while a:
e Building block for other k += 1
samplers a := Bernoulli(gamma / k)

]p[k>n]:Z.7_’...Z:7’_"
12 n n return kK % 2 ==

. . yn—l yn
Pl =n| = n-1)! n!

e y2n y2n+i oo " -
Plk odd] = ¥n=o ((Zn)! B (2n+1)!) ~an=0" = € ’

Bernoulli(exp(-y)) Distribution

functi?n BernExp (gamma : 2 method BernEXp(gamma): bOOl
{ requires 0.0 <= gamma : # for gamma in [0,1]
Bind (k ‘= @
While (a := true
while a:
k += 1

a := Bernoulli(gamma / k)

Bernoulli (gamma / k' as
a' => Return((a', k'))
) return K % 2 == 1
) ((true, 0)),
)) => Return(ak.l %

Probabilistic Loops

e Some samplers require Saneton e
cond: =>
loops (e.g. rejection et 1
sampling) R
(state:) ==
e Cannot sample from - ondetare)
Uniform{0,1,2} with then Bind(
bounded number of bits codvistare),
While(cond, body))
e Loopsin samplers elsefreturn(state)

terminate almost surely

Error: cannot prove termination

Tracking Nontermination

e We need to track —
nontermination explicitly N

e Change our probability | Diverging
monadl | Result (value:

function Coin () :

function Return<A> (a:

— can talk about the

probability of DR

nontermination! £ A -> <

Probabilistic While Loops — Take 2

function WhileBounded<A> (

fuel: , cond: -> , body: <A>, 1init: Whlle |00p Wlth

<a> { bounded fuel
if fuel == 0 then s => Diverging Out Of fuel
else if !'cond(init) then Return (init)

else Bind(Normal recursion
body (init),

state' => WhileBounded (fuel - 1, cond, body, state'))

}
ghost function While<A> (

. cond: —> , body:
Unbounded while loop): A -> B> |
(init:) => (s:) =>

. 1if fuel: :
Does the |00p terminate IWhileBounded (fuel, cond, body, init) (s).Diverging?
for some amount of fuel? then WhileBounded (fuel, cond, body, init) (s)

else Diverging

Verifying While Loops?

e How can we prove that a
loop produces res with
probability p?

e Idea: reason about the
bounded version (via
induction)

e Take the limit fuel — oo

lemma {:axiom} WhileProbability<A>(

cond: ->
body: => <A>

Required formalizing some
real analysis in Dafny

init:
res:

p:

requires !cond(res)
requires ConvergesTo (
(fuel:) => probMass (
WhileBounded (fuel, cond, body,init), res),
p)
ensures probMass (While (cond, body) (init), res)

== P

Correctness Proof for Bernoulli(exp(-Y))

Can be proved Wlth -the lemma BernExpCorrectness(gamma:
. . . requires 0.0 <= gamma <= 1.0
preVIOUS |emma and a Ilmlt ensures probMass (BernExp(gamma), true)

argument! == Exp (-gamma)

ensures probMass (BernExp(gamma), false)

== 1.0 - Exp(-gamma)

Required defining the
exponential function in Dafny
(partially axiomatized)

Dafny-VMC

e Samplers of various distributions
e Proofs of correctness
e https://qgithub.com/dafny-lang/Dafny-VMC/

=Y

John Fablan Stefan
Tristan Zaiser Zetzsche

Verification of Bernoulli(exp(-Yy)):

e Formalizing real analysis (limits & series)
e Probabilistic loops and nontermination

Questions?

https://github.com/dafny-lang/Dafny-VMC/

Backup slides

[external]

Current Status of VMC | verified |

[Coin] [tested }
[Uniform{ 0, .., 2*k-1 } / depends on

)

DiscreteLaplace(m/n) J

?)
Uniform{ O, ..,n-1} ‘
) :
Bernoulli(m/n) } DiscreteGaussian(m/n) J
)

Bernoulli(exp(—=m/n))

Probability in Dafny

ghost const eventSpace :
iset<iset<Bits>>

. o-algebra on bitstreams ghost const prob: iset<Bits> -> real

(“allowed events”) _
- ghost function probMass<A>(
e Probability measure on h: Hurd<A>, result: A): real {

bitstreams (“independent & prob(iset s | h(s).0 == result)
uniformly distributed bits")

e Definition of probability spaces 9ghost predicate IsProbSpace<A>(
eventSpace: iset<iset<A>>,

e Hurd proved that bitstreams are prob: iset<A> -> real)
a probability space (currently lemma BitsIsProbSpace()
axiomatized) ensures IsProbSpace(eventSpace, prob)

e Can state correctness! lemma CoinIsCorrect()
ensures probMass(Coin(), false)

ensures probMass(Coin(), true) =

= 0.5

Imperative Sampler

e SampleCoinreliesonan trait CoinSampler {

ghost var s: Rand.Bitstream
external random source method {:extern} SampleCoin()

e E.g.: Java random number returns (b: bool)
generator ensures Coin(old(s))==(b, s)

e Other imperative samplers }
use SampleCoin as a
primitive

Assumption: external random source

behaves like the model!

Structure of Probabilistic Samplers in Dafny

function Uniform(n: nat): Hurd<nat>
requires n >= 1

1. Functional Model "
2. Correctness proof 1lemma UniformCorrect(n: nat)

ensures forall i: nat :: 0 <= 1 < n ==>

3. |mperative { “|:.)r<;bMass(Uniform(n), i) == 1.0 / n as real

implementation trait UniformSampler {

ghost var s: Bitstream

4. PrOOf Of method SampleUniform(n: nat)
returns (i: nat)
correspondence modifies this
.. requires n >= 1 .
5. Statistical tests { ensur}:es Uniform(n) (old(s))==(1i, s)
\ e
method {:test} TestUniform() { ... }

Axiomatizations

Measure theory
Construction of the probability space on Bits
Measurability and independence of probabilistic primitives

Properties of the exponential function

o Functional equation: exp(x)exp(y) = exp(x +y)
o Convergence of its power series

Future Work: Representing Probabilistic Computations

Hurd monad:

e Pros: easy to relate imperative code and functional model
e Cons: hard to prove correctness (in particular, independence),
need to thread bitstreams through the proof

Can we use a different probability monad?

e splittable RNG?
e Giry monad?

