VMC: a Dafny Library for Verified Monte Carlo Algorithms

Fabian Zaiser* Stefan Zetzsche Jean-Baptiste Tristan

*work completed during an internship at AWS

Probabilistic Sampling

... means generating samples from a desired distribution

... is important:

- Cryptography
- Differential Privacy

... is hard to do correctly, e.g.

- Fisher Yates shuffle (random permutation)
- Attacks on Differential Privacy

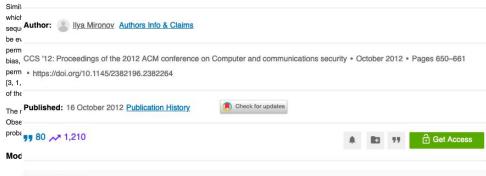
Potential sources of bias [edit]

Care must be taken when implementing the Fisher–Yates shuffle, both in the implementation of the algorithm itself and in the generation of the random numbers it is built on, otherwise the results may show detectable bias. A number of common sources of bias have been listed below.

Implementation errors [edit]

A common error when implementing the Fisher–Yates shuffle is to pick the random numbers from the wrong range. The flawed algorithm may appear to work correctly, but it will not produce each possible permutation with equal probability, and it may not produce certain permutations at all. For example, a common significance of the least significant bits for differential

all ek privacy



■ ABSTRACT

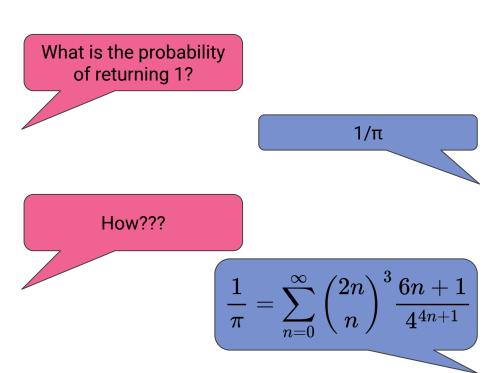
Doing rando fixed comr We describe a new type of vulnerability present in many implementations of differentially private mechanisms. In particular, all four publicly available general purpose systems for differentially private computations are susceptible to our attack.

The vulnerability is based on irregularities of floating-point implementations of the privacy-preserving Laplacian mechanism. Unlike its mathematical abstraction, the textbook sampling procedure results in a porous distribution over double-precision numbers that allows one to breach differential privacy with just a few queries into the mechanism.

We propose a mitigating strategy and prove that it satisfies differential privacy under some mild assumptions on available implementation of floating-point arithmetic.

Reasoning about Probabilistic Samplers is Hard

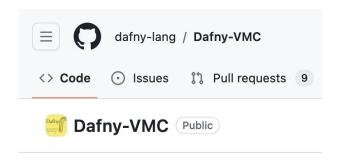
```
X ~ Geometric(3/4)
Y ~ Geometric(3/4)
Z ~ Bernoulli(5/9)
T := X + Y + Z
repeat 3 times:
    F ~ Binomial(2 * T, 1/2)
    if F != T:
        return 0
return 1
```



Example from: Flajolet, Pelletier, Soria: On Buffon Machines and Numbers

Dafny-VMC ("Verified Monte-Carlo")

- Samplers of various distributions
- Proofs of correctness
- Implemented and verified in Dafny
- Interoperability with Java
- Work in progress (partially axiomatized)
- Open-source on Github:
 - https://github.com/dafny-lang/Dafny-VMC/



Structure of Probabilistic Samplers in Dafny-VMC

- Functional model
 Correctness proof of the model

 Focus of this talk

 - Imperative implementation (using external randomness source)
- 4. Proof of correspondence between model and implementation
- 5. Statistical tests

Randomized Functions in Dafny

- Dafny's functions are deterministic
- → need to get infinitely many random bits as input
- Compute random value and return unused bits
- "Bitstream transformers"

```
type Bits = nat -> bool

function CoinModel(s: Bits): (bool, Bits) {
   (s(0), (n: nat) => s(n + 1))
}
```

Compositionality

- Passing around bitstreams is error-prone
- Joe Hurd introduced a monad abstraction
- Small set of combinators:

```
Coin, Return, Bind, While
```

 Can be used to model all our samplers

```
type Hurd < A > = Bits - > (A, Bits)
function Coin(): Hurd<bool> {
  (s: Bits) => (s(0), (n: nat) => s(n + 1))
function Return<A>(a: A): Hurd<A> {
  (s: Bits) \Rightarrow (a, s)
function Bind<A, B>(
  h: Hurd<A>, f: A -> Hurd<B>
): Hurd<B>
function While<A>(
  cond: A -> bool,
  body: A -> Hurd<A>
 : A -> Hurd<A>
```

Probability in Dafny

- Probability measure on bitstreams ("independent & uniformly distributed bits")
- Hurd proved that bitstreams are a probability space (currently axiomatized)

```
ghost const prob: iset<Bits> -> real
ghost function probMass<A>(
  h: Hurd<A>, result: A
): real {
  prob(iset s | h(s).0 == result)
lemma CoinIsCorrect()
  ensures probMass(Coin(), false) == 0.5
  ensures probMass(Coin(), true) == 0.5
```

Bernoulli($exp(-\gamma)$) Distribution

- Returns true with probability
 exp(-γ) for γ in [0, 1]
- "Source" of irrational probabilities
- Building block for other samplers

```
\mathbb{P}[k > n] = \frac{\gamma}{1} \cdot \frac{\gamma}{2} \cdots \frac{\gamma}{n} = \frac{\gamma^{n}}{n!}
\mathbb{P}[k = n] = \frac{\gamma^{n-1}}{(n-1)!} - \frac{\gamma^{n}}{n!}
\mathbb{P}[k \text{ odd}] = \sum_{n=0}^{\infty} \left(\frac{\gamma^{2n}}{(2n)!} - \frac{\gamma^{2n+1}}{(2n+1)!}\right) = \sum_{n=0}^{\infty} \frac{(-\gamma)^{n}}{n!} = e^{-\gamma}
```

```
method BernExp(gamma: real): bool
 # for gamma in [0,1]
  k := 0
  a := true
  while a:
    k += 1
    a := Bernoulli(gamma / k)
  return k % 2 == 1
```

Bernoulli($exp(-\gamma)$) Distribution

```
function BernExp(gamma: real): Hurd<bool>
  requires 0.0 <= gamma <= 1.0
  Bind(
   While (
      (ak: (bool, nat)) => ak.0,
      (ak: (bool, nat)) =>
       var k' := ak.1 + 1;
       Bind(
          Bernoulli(gamma / k' as real),
          a' => Return((a', k'))
    )((true, 0)),
    (ak: (bool, nat)) => Return(ak.1 % 2 == 1)
```

```
method BernExp(gamma): bool
  # for gamma in [0,1]
  k := 0
  a := true
  while a:
    k += 1
    a := Bernoulli(gamma / k)
  return k % 2 == 1
```

Probabilistic Loops

- Some samplers require loops (e.g. rejection sampling)
- Cannot sample from Uniform{0,1,2} with bounded number of bits
- Loops in samplers
 terminate almost surely

```
function While<A>(
 cond: A -> bool,
 body: A -> Hurd<A>
): A -> Hurd<A> {
  (state: A) =>
 if cond(state)
  then Bind(
   body(state),
    While(cond, body))
 else Return(state)
```

Error: cannot prove termination

Tracking Nontermination

- We need to track
 nontermination explicitly
- Change our probability monad!

→ can talk about the probability of nontermination!

```
type Hurd < A > = Bits -> (A, Bits) // old
datatype Result<A> =
 Diverging
 Result (value: A, rest: Bits)
function Coin(): Prob<bool>
function Return<A>(a: A): Prob<A>
function Bind<A, B>(
 p: Prob<A>,
 f: A \rightarrow Prob < B >
): Prob<B>
```

Probabilistic While Loops – Take 2

```
function WhileBounded<A>(
  fuel: nat, cond: A -> bool, body: A -> Prob<A>, init: A
): Prob<A> {
  if fuel == 0 then s => Diverging Out of fuel
  else if !cond(init) then Return(init)
  else Bind(
    body(init),
    state' => WhileBounded(fuel - 1, cond, body, state'))
}
```

While loop with bounded fuel

Normal recursion

Unbounded while loop

Does the loop terminate for some amount of fuel?

```
ghost function While<A>(
   cond: A -> bool, body: A -> Prob<A>
): A -> Prob<A> {
   (init: A) => (s: Bits) =>
   if fuel: nat :|
    !WhileBounded(fuel, cond, body, init)(s).Diverging?
   then WhileBounded(fuel, cond, body, init)(s)
   else Diverging
}
```

Verifying While Loops?

- How can we prove that a loop produces res with probability p?
- Idea: reason about the bounded version (via induction)
- Take the **limit** fuel $\rightarrow \infty$

```
lemma {:axiom} WhileProbability<A>(
  cond: A -> bool,
 body: A -> Prob<A>,
                        Required formalizing some
 init: A,
                        real analysis in Dafny
  res: A,
 p: real
  requires !cond(res)
  requires ConvergesTo(
    (fuel: nat) => probMass(
      WhileBounded (fuel, cond, body, init), res),
    p)
  ensures probMass(While(cond, body)(init), res)
```

Correctness Proof for Bernoulli($exp(-\gamma)$)

Can be proved with the previous lemma and a limit argument!

```
lemma BernExpCorrectness(gamma: real)
  requires 0.0 <= gamma <= 1.0
  ensures probMass(BernExp(gamma), true)
  == Exp(-gamma)
  ensures probMass(BernExp(gamma), false)
  == 1.0 - Exp(-gamma)</pre>
```

Required defining the exponential function in Dafny (partially axiomatized)

Dafny-VMC

- Samplers of various distributions
- Proofs of correctness
- https://github.com/dafny-lang/Dafny-VMC/

John

Tristan

Verification of Bernoulli($exp(-\gamma)$):

- Formalizing real analysis (limits & series)
- Probabilistic loops and nontermination

Questions?

Backup slides

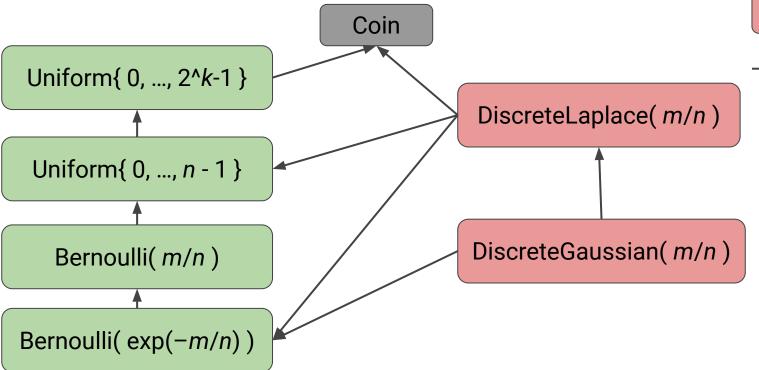
Current Status of VMC

external

verified

tested

depends on



Probability in Dafny

- σ-algebra on bitstreams ("allowed events")
- Probability measure on bitstreams ("independent & uniformly distributed bits")
- Definition of probability spaces
- Hurd proved that bitstreams are a probability space (currently axiomatized)
- Can state correctness!

```
ghost const eventSpace :
iset<iset<Bits>>
ghost const prob: iset<Bits> -> real
ghost function probMass<A>(
  h: Hurd<A>, result: A): real {
  prob(iset s | h(s).0 == result)
ghost predicate IsProbSpace<A>(
  eventSpace: iset<iset<A>>,
  prob: iset<A> -> real)
lemma BitsIsProbSpace()
  ensures IsProbSpace(eventSpace, prob)
lemma CoinIsCorrect()
  ensures probMass(Coin(), false) == 0.5
  ensures probMass(Coin(), true) == 0.5
```

Imperative Sampler

- SampleCoin relies on an external random source
- E.g.: Java random number generator
- Other imperative samplers use SampleCoin as a primitive

```
trait CoinSampler {
  ghost var s: Rand.Bitstream

method {:extern} SampleCoin()
  returns (b: bool)
  modifies this
  ensures Coin(old(s)) == (b, s)
}
```

Assumption: external random source behaves like the model!

Structure of Probabilistic Samplers in Dafny

- 1. Functional Model
- 2. Correctness proof
- 3. Imperative implementation
- 4. Proof of correspondence
- 5. Statistical tests

```
function Uniform(n: nat): Hurd<nat>
  requires n >= 1
lemma UniformCorrect(n: nat)
  ensures forall i: nat :: 0 <= i < n ==>
    probMass(Uniform(n), i) == 1.0 / n as real
{ . . . }
trait UniformSampler {
  ghost var s: Bitstrèam
  method SampleUniform(n: nat)
    returns (i: nat)
    modifies this
    requires n >= 1
    ensures Uniform(n)(old(s))==(i, s)
method {:test} TestUniform() { ... }
```

Axiomatizations

- Measure theory
- Construction of the probability space on Bits
- Measurability and independence of probabilistic primitives
- Properties of the exponential function
 - Functional equation: exp(x)exp(y) = exp(x + y)
 - Convergence of its power series

Future Work: Representing Probabilistic Computations

Hurd monad:

- Pros: easy to relate imperative code and functional model
- Cons: hard to prove correctness (in particular, independence),
 need to thread bitstreams through the proof

Can we use a different probability monad?

- splittable RNG?
- Giry monad?