Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops

Fabian Zaiser¹

Andrzej Murawski¹

Luke Ong^{1,2}

¹University of Oxford

²Nanyang Technological University

POPL, 2025-01-23

A probabilistic puzzle

- You throw a fair six-sided die repeatedly until you get a 6.
- You observe only even numbers during the throws.
- What is the expected number of throws (including the 6) conditioned on this event?

Probabilistic Programming

```
Throws := 0;
Die := 0:
while Die \neq 6 {
   Die \sim \mathsf{Uniform}\{1,\ldots,6\};
  observe Die \in \{2, 4, 6\};
   Throws += 1
Query: \mathbb{E}[Throws]
```

Probabilistic Programming

```
Throws := 0;
Die := 0:
while Die \neq 6 {
   Die \sim \mathsf{Uniform}\{1,\ldots,6\};
  observe Die \in \{2, 4, 6\}:
   Throws += 1
Query: \mathbb{E}[Throws]
```

Challenges

- infinite support
- observations & conditioning
- unbounded loops

Probabilistic Programming

```
Throws := 0:
Die := 0:
while Die \neq 6 {
   Die \sim \mathsf{Uniform}\{1,\ldots,6\};
  observe Die \in \{2, 4, 6\}:
   Throws += 1
Query: \mathbb{E}[Throws]
```

Challenges

- infinite support
- observations & conditioning
- unbounded loops

No existing tool for rigorous & automatic analysis!

- ✓ precise result
- often intractable
- or require user annotations

Approximate methods

✓ always applicable

no guarantees

- ✓ precise result
- often intractable
- or require user annotations

Guaranteed bounds

- ✓ often applicable
- ✓ hard guarantees: $\mathbb{P}[X = a] \in [l, u]$

Approximate methods

- ✓ always applicable
- no guarantees

- ✓ precise result
- often intractable
- or require user annotations

Guaranteed bounds

- ✓ often applicable
- ✓ hard guarantees: $\mathbb{P}[X = a] \in [l, u]$

Approximate methods

- ✓ always applicable
 - x no guarantees

[Beutner et al., PLDI 2022]

Why guaranteed bounds?

- → safety properties (quantitative program verification)
- → ground truth to debug approximate methods

- ✓ precise result
- X often intractable
- or require user annotations

Guaranteed bounds

- √ often applicable
- ✓ hard guarantees: $\mathbb{P}[X = a] \in [l, u]$

Approximate methods

- ✓ always applicable
 - 🗡 no guarantees

[Beutner et al., PLDI 2022]

Why guaranteed bounds?

- → safety properties (quantitative program verification)
- → ground truth to debug approximate methods

Previous work on guaranteed bounds

- has unnecessary overhead for discrete programs
- cannot bound moments and tails

Problem Statement

For a discrete probabilistic program with variables in \mathbb{N} , with conditioning, and with unbounded loops,

Problem Statement

For a discrete probabilistic program with variables in \mathbb{N} , with conditioning, and with unbounded loops, we want to automatically find bounds on

- ▶ its probabilities: $\mathbb{P}[X = n] \in [l, u]$,
- ▶ its k-th moments: $\mathbb{E}[X^k] \in [l, u]$,
- ▶ its tail asymptotics: $\mathbb{P}[X = n] \leq O(c^n)$ for c < 1.

Problem Statement

For a discrete probabilistic program with variables in \mathbb{N} , with conditioning, and with unbounded loops, we want to automatically find bounds on

- ▶ its probabilities: $\mathbb{P}[X = n] \in [l, u]$,
- ▶ its k-th moments: $\mathbb{E}[X^k] \in [l, u]$,
- ▶ its tail asymptotics: $\mathbb{P}[X = n] \leq O(c^n)$ for c < 1.

Two approaches

- Residual mass semantics
- Geometric bound semantics

Programming Language

Imperative language with discrete variables X_1, \ldots, X_n taking values in \mathbb{N} .

```
Programs P ::= \operatorname{skip} \mid P_1; P_2 \mid X_k += a \mid X_k \stackrel{\cdot}{-} = 1 \mid X_k \sim \operatorname{Bernoulli}(\rho) 
\mid \operatorname{if} E \left\{ P_1 \right\} \operatorname{else} \left\{ P_2 \right\} \mid \operatorname{while} E \left\{ P \right\} \mid \operatorname{observe} E
Events E ::= X_k = a \mid \neg E \mid E_1 \wedge E_2
where \rho \in [0,1], \quad a \in \mathbb{N}
```

Programming Language

Imperative language with discrete variables X_1, \ldots, X_n taking values in \mathbb{N} .

```
Programs P ::= \operatorname{skip} \mid P_1; P_2 \mid X_k += a \mid X_k \stackrel{\cdot}{-} = 1 \mid X_k \sim \operatorname{Bernoulli}(\rho)
\mid \operatorname{if} E \left\{ P_1 \right\} \operatorname{else} \left\{ P_2 \right\} \mid \operatorname{while} E \left\{ P \right\} \mid \operatorname{observe} E
Events E ::= X_k = a \mid \neg E \mid E_1 \wedge E_2
where \rho \in [0,1], \quad a \in \mathbb{N}
```

Expressivity

- Turing complete
- Geometric & negative binomial distributions + all finite discrete distributions
- some constructs difficult to encode, e.g. Poisson distribution

Semantics

 $[\![P]\!]$ transforms distributions on the state space \mathbb{N}^n :

Semantics

$[\![P]\!]$ transforms distributions on the state space \mathbb{N}^n :

- ightharpoonup distribution at the start of the program: Dirac $(0,\ldots,0)$
- ignore normalization in this talk

Fixpoint equation

Fixpoint equation

Unroll the loop a few times (Kleene iteration):

Unroll the loop a few times (Kleene iteration):

$$\llbracket \operatorname{while} E\left\{P\right\} \rrbracket \Big](\mu) = \mu|_{\neg E} + \Big[\llbracket \operatorname{while} E\left\{P\right\} \rrbracket \Big] (\llbracket P \rrbracket(\mu|_E))$$

Unroll the loop a few times (Kleene iteration):

$$\begin{split} & [\![\text{while } E \, \{P\}]\!] (\mu) = \mu|_{\neg E} + [\![\text{while } E \, \{P\}]\!] ([\![P]\!] (\mu|_E)) \\ & = \mu|_{\neg E} + [\![P]\!] (\mu|_E)|_{\neg E} + \underbrace{[\![\text{while } E \, \{P\}]\!] ([\![P]\!] ([\![P]\!] (\mu|E)|_E))}_{\succeq \mathbf{0}} \end{split}$$

Unroll the loop a few times (Kleene iteration):

$$\begin{split} \llbracket \text{while } E \left\{ P \right\} \rrbracket \left(\mu \right) &= \mu|_{\neg E} + \llbracket \text{while } E \left\{ P \right\} \rrbracket \left(\llbracket P \rrbracket (\mu|_E) \right) \\ &= \mu|_{\neg E} + \llbracket P \rrbracket (\mu|_E)|_{\neg E} + \underbrace{\llbracket \text{while } E \left\{ P \right\} \rrbracket \left(\llbracket P \rrbracket (\mu|E)|_E \right) \right)}_{\succeq \mathbf{0}} \\ &\succeq \mu|_{\neg E} + \llbracket P \rrbracket (\mu|_E)|_{\neg E} \end{split}$$

Unroll the loop a few times (Kleene iteration):

$$\begin{split} & [\![\text{while } E \, \{P\}]\!](\mu) = \mu|_{\neg E} + [\![\text{while } E \, \{P\}]\!]([\![P]\!](\mu|_E)) \\ &= \mu|_{\neg E} + [\![P]\!](\mu|_E)|_{\neg E} + \underbrace{[\![\text{while } E \, \{P\}]\!]([\![P]\!]([\![P]\!](\mu|E)|_E))}_{\succeq \mathbf{0}} \\ &\succeq \mu|_{\neg E} + [\![P]\!](\mu|_E)|_{\neg E} \end{split}$$

- easy to compute: only finite discrete distributions involved
- converges to true distribution with increasing unrolling

Upper bounds: residual mass

Flow of total probability mass $\mu(\mathbb{N}^n)$

- initially 1
- in every iteration, some mass "flows" out of the loop
- can bound the residual mass after unrolling

Upper bounds: residual mass

Flow of total probability mass $\mu(\mathbb{N}^n)$

- ▶ initially 1
- in every iteration, some mass "flows" out of the loop
- can bound the residual mass after unrolling

$$\underbrace{ \llbracket P \rrbracket_{\mathrm{res}}(\mu)}_{\mathrm{residual \; mass}} = \underbrace{\mu(\mathbb{N}^n)}_{\mathrm{initial \; mass}} - \underbrace{ \llbracket P \rrbracket_{\mathrm{lo}}(\mu)(\mathbb{N}^n)}_{\mathrm{lower \; bound \; on \; mass}}$$

Upper bounds: residual mass

Flow of total probability mass $\mu(\mathbb{N}^n)$

- ▶ initially 1
- in every iteration, some mass "flows" out of the loop
- can bound the residual mass after unrolling

$$\underbrace{ \llbracket P \rrbracket_{\rm res}(\mu) }_{\rm residual \; mass} = \underbrace{ \mu(\mathbb{N}^n) }_{\rm initial \; mass} - \underbrace{ \llbracket P \rrbracket_{\rm lo}(\mu)(\mathbb{N}^n) }_{\rm lower \; bound \; on \; mass}$$

The probability of S at the end of the program P is bounded by:

$$\underbrace{\llbracket P \rrbracket(\mu)(S)}_{\text{probability of }S} \preceq \underbrace{\llbracket P \rrbracket_{\text{lo}}(\mu)(S)}_{\text{lower bound}} + \underbrace{\llbracket P \rrbracket_{\text{res}}(\mu)}_{\text{residual mass}}$$

Residual mass: in practice

- ✓ bounds on probability masses
- ✓ speedup compared to previous work: $100 \times$ to $10^5 \times$
- X flat tail bounds
- cannot bound moments
- → need more informative bounds

What if $[B](\mu|_E) \leq \mu$?

What if $[\![B]\!](\mu|_E) \preceq c \cdot \mu$ for c < 1?

$$\begin{array}{c} & \text{What if } \llbracket B \rrbracket(\mu|_E) \preceq c \cdot \mu \text{ for } c < 1? \\ & \text{while } E \left\{ B \right\} \end{array} \\ & \text{while } E \left\{ B \right\} \rrbracket(\mu) = \mu|_{\neg E} + \\ & \text{[while } E \left\{ B \right\} \rrbracket(\underline{\mu}|_E)) \\ & \preceq c \cdot \mu \end{array} \\ & \preceq \mu|_{\neg E} + c \cdot \\ & \text{[while } E \left\{ B \right\} \rrbracket(\mu) \\ \Longrightarrow (1-c) \cdot \\ & \text{[while } E \left\{ B \right\} \rrbracket(\mu) \preceq \mu|_{\neg E} \\ \end{array}$$

Upper bounds — part 2

Upper bounds — part 2

- \nearrow The initial distribution μ rarely decreases uniformly by a factor of c < 1.
- \rightarrow Find $\nu \succeq \mu$ satisfying the condition! ("Strengthen the induction hypothesis")

Contraction invariant

- ▶ Let $P = \text{while } E\{B\}$ be a loop.
- ▶ Let μ be an initial distribution on \mathbb{N}^n .
- \blacktriangleright A **contraction invariant** is a distribution ν such that

$$\mu \leq \nu$$
 and $\llbracket B \rrbracket(\nu|_C) \leq c \cdot \nu$ where $c < 1$

Contraction invariant

- ▶ Let $P = \text{while } E\{B\}$ be a loop.
- ▶ Let μ be an initial distribution on \mathbb{N}^n .
- \blacktriangleright A **contraction invariant** is a distribution ν such that

$$\mu \leq \nu$$
 and $\llbracket B \rrbracket (\nu|_C) \leq c \cdot \nu$ where $c < 1$

If ν is a contraction invariant for while $E\{B\}$ and μ then

[while
$$E\{B\}$$
] $(\mu) \preceq \frac{1}{1-c} \cdot \nu|_{\neg E}$

Contraction invariant

- ▶ Let $P = \text{while } E\{B\}$ be a loop.
- ▶ Let μ be an initial distribution on \mathbb{N}^n .
- \blacktriangleright A **contraction invariant** is a distribution ν such that

$$\mu \leq \nu$$
 and $\llbracket B \rrbracket(\nu|_C) \leq c \cdot \nu$ where $c < 1$

If ν is a contraction invariant for while $E\{B\}$ and μ then

[while
$$E\{B\}$$
] $(\mu) \preceq \frac{1}{1-c} \cdot \nu|_{\neg E}$

How do we find a contraction invariant?

We need to reason about tails!

We need to reason about tails!

$$p(k) = \rho \cdot (1 - \rho)^k$$

Geometric distribution?

We need to reason about tails!

Geometric distribution?

- ✓ moments, tails are easy
- not closed under many program operations (e.g. increment)

We need to reason about tails!

Geometric distribution?

- ✓ moments, tails are easy
- not closed under many program operations (e.g. increment)

→ Generalize!

$$\mathsf{EGD}\!\left(\begin{pmatrix}q_{0,0} & q_{0,1} \\ q_{1,0} & q_{1,1}\end{pmatrix}, (\alpha,\beta)\right)$$

	0	1	2	3	
0	$q_{0,0}$	$q_{0,1}$	$q_{0,1}\cdot lpha$	$q_{0,1} \cdot \alpha^2$	
1	$q{1,0}$	$q_{1,1}$	$q_{1,1}\cdot \alpha$	$q_{1,1} \cdot \alpha^2$	
2	$q_{1,0}\cdot eta$	$q_{1,1}\cdot eta$	$q_{1,1}\cdot lpha\cdot eta$	$q_{1,1} \cdot \alpha^2 \cdot \beta$	
3	$q_{1,0} \cdot \beta^2$	$q_{1,1}\cdot eta^2$	$q_{1,1} \cdot \alpha \cdot \beta^2$	$q_{1,1} \cdot \alpha^2 \cdot \beta^2$	
:		:	:	:	٠

$$\mathsf{EGD}\!\left(\begin{pmatrix}q_{0,0} & q_{0,1} \\ q_{1,0} & q_{1,1}\end{pmatrix}, (\alpha,\beta)\right)$$

- easy to compute probababilities, moments, tail asymptotics
- closed under many operations

- need a semantics that operates on EGDs & yields upper bounds
- not a function: there may be many valid upper bounds

- need a semantics that operates on EGDs & yields upper bounds
- not a function: there may be many valid upper bounds

Geometric bound semantics

 $[\![P]\!]^{\text{geo}}$ is a **relational** semantics on EGDs

$$(\mathsf{EGD}(\mathbf{P}, \boldsymbol{\alpha}), \mathsf{EGD}(\mathbf{Q}, \boldsymbol{\beta})) \in \llbracket P \rrbracket^{\mathsf{geo}}$$

- need a semantics that operates on EGDs & yields upper bounds
- not a function: there may be many valid upper bounds

Geometric bound semantics

 $[\![P]\!]^{\text{geo}}$ is a **relational** semantics on EGDs

$$(\mathsf{EGD}(\mathbf{P}, \pmb{\alpha}), \mathsf{EGD}(\mathbf{Q}, \pmb{\beta})) \in [\![P]\!]^\mathsf{geo}$$

▶ ensures the **bound**: $[P](EGD(P, \alpha)) \leq EGD(Q, \beta)$

- need a semantics that operates on EGDs & yields upper bounds
- not a function: there may be many valid upper bounds

Geometric bound semantics

 $[\![P]\!]^{\text{geo}}$ is a **relational** semantics on EGDs

$$(\mathsf{EGD}(\mathbf{P}, \boldsymbol{\alpha}), \mathsf{EGD}(\mathbf{Q}, \boldsymbol{\beta})) \in \llbracket P
rbracket^{\mathsf{geo}}$$

- ▶ ensures the **bound**: $[P](EGD(P, \alpha)) \leq EGD(Q, \beta)$
- reduces to **polynomial inequalities** in the parameters P, Q, α, β

- need a semantics that operates on EGDs & yields upper bounds
- not a function: there may be many valid upper bounds

Geometric bound semantics

 $[P]^{geo}$ is a **relational** semantics on EGDs

$$(\mathsf{EGD}(\mathbf{P}, \boldsymbol{\alpha}), \mathsf{EGD}(\mathbf{Q}, \boldsymbol{\beta})) \in \llbracket P
rbracket^{\mathsf{geo}}$$

- ▶ ensures the **bound**: $\llbracket P \rrbracket (\mathsf{EGD}(\mathbf{P}, \boldsymbol{\alpha})) \leq \mathsf{EGD}(\mathbf{Q}, \boldsymbol{\beta})$
- reduces to **polynomial inequalities** in the parameters P, Q, α, β
- ▶ can **decide** the existence of an upper bound EGD(Q, β)!

Theoretical results

Soundness: Residual mass semantics and geometric bound semantics are sound.

Convergence: The bounds for both semantics converge in total variation distance, as loops are unrolled further and further.*

Existence: We proved some sufficient and some necessary conditions for the existence of geometric bounds.

```
Throws := 0;
Die := 0;
while Die \neq 6 {
  Die \sim \mathsf{Uniform}\{1,\ldots,6\};
  observe Die \in \{2, 4, 6\};
   Throws += 1
```



```
Throws := 0;
Die := 0;
while Die \neq 6 {
  Die \sim \mathsf{Uniform}\{1,\ldots,6\};
  observe Die \in \{2, 4, 6\};
   Throws += 1
```


Applicability

- collected 43 benchmarks from literature
- ► finds bounds for 37 (85%) of benchmarks
- many could not be automatically analyzed before

Applicability

- collected 43 benchmarks from literature
- ► finds bounds for 37 (85%) of benchmarks
- many could not be automatically analyzed before

Performance

- running time: usually a few seconds, up to 5 minutes
- quality of bounds: usually very tight; worse for heavy-tailed distributions
- comparison with previous tools: supports more benchmarks, often faster

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic Programs with Loops

Lower bounds: unrolling & cutting off loops

Residual mass semantics: flat bound on residual distribution missed by the lower bound

- faster than previous methods
- ▶ bounds on probabilities

Geometric bound semantics: upper bounds with geometric tails

- operates on EGDs (eventually geometric distributions)
- \blacktriangleright contraction invariants: distribution decreases by factor c<1 each iteration
- reduces to polynomial inequality constraints
- ► can bound probabilities, moments, tails

Backup slides

Implementation

Solving polynomial constraints

- existential theory of the reals is decidable
- SMT solvers are usually too slow
- ► IPOPT, numerical solver, works well
- numerical results are verified with exact arithmetic

Implementation

Solving polynomial constraints

- existential theory of the reals is decidable
- SMT solvers are usually too slow
- ► IPOPT, numerical solver, works well
- numerical results are verified with exact arithmetic

Optimizing the bound

- want bounds that minimize some objective: expected value / tail decay rate / . . .
- use numerical optimization

Limitations

Programming language:

- no negative or continuous variables
- some distributions (e.g. Poisson) are difficult to encode
- no symbolic inputs

Geometric bound semantics:

- incompleteness: bounds may not exist
- solving polynomial constraints may be too difficult
- tail bounds do not converge
- correlations between variables cannot be represented

More plots

(d) Coupon collector problem with 5 coupons

(e) Herman's self-stabilization with 3 processes