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A probabilistic puzzle

» You throw a fair six-sided die repeatedly until you get a 6.
» You observe only even numbers during the throws.

» What is the expected number of throws (including the 6)
conditioned on this event?

S



Probabilistic Programming

Throws := 0;
Die = 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

}
Query: E[Throws]



Probabilistic Programming

Throws := 0;
Die = 0: Challenges
while Die # 6 { » infinite support
Die ~ Uniform{1,...,6}; > observations & conditioning
observe Die € {2,4,6}; » unbounded loops
Throws +=1
}

Query: E[Throws]



Probabilistic Programming

Throws := 0;
Die :=0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

}
Query: E[Throws]

Challenges
» infinite support
» observations & conditioning
» unbounded loops

No existing tool for rigorous &
automatic analysis!
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Guaranteed Bounds for Posterior Inference
Iniversal Probabilistic Programming

[Beutner et al., PLDI
2022]

Guaranteed bounds Approximate methods
v/ often applicable v always applicable
v/ hard guarantees: X no guarantees

PX =a] € [I,u]

Why guaranteed bounds?
— safety properties (quantitative program verification)

— ground truth to debug approximate methods



Exact techniques Guaranteed bounds Approximate methods

v/ precise result v/ often applicable v always applicable
X often intractable v/ hard guarantees: X no guarantees
PX =a] € [I,u]

X or require user
annotations

©©®  Why guaranteed bounds?
LR safety properties (quantitative program verification)
— ground truth to debug approximate methods
v Previous work on guaranteed bounds
[Beutﬁér ot al.,“ﬁLDl X has unnecessary overhead for discrete programs

2022] X cannot bound moments and tails
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Problem Statement

For a discrete probabilistic program with variables in N,
with conditioning, and with unbounded loops,
we want to automatically find bounds on

> its probabilities: P[X = n] € [I, u],
> its k-th moments: E[X*] € [I, u],
» its tail asymptotics: P[X = n] < O(c") for ¢ < 1.

Two approaches
» Residual mass semantics
» Geometric bound semantics
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Imperative language with discrete variables X3, ..., X,, taking values in N.
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Programming Language
Imperative language with discrete variables X3, ..., X,, taking values in N.

Programs P ::=skip | P;; P | Xy +=a | X —=1| X ~ Bernoulli(p)
| if E{P,}else {P,} | while E{P} | observe E
Events £ := X, =a | -E | E1 A Ey
where p € [0,1], a €N

Expressivity
» Turing complete
» Geometric & negative binomial distributions + all finite discrete distributions
» some constructs difficult to encode, e.g. Poisson distribution



Semantics

[P] transforms distributions on the state space N":

Event £ {“restriction” L E}

Initial distribution p

Initial distribution ;; ->rement P {resultdistribution [[P]](u)}




Semantics

[P] transforms distributions on the state space N":

Ve

=

Initial distribution p
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Event £ [
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Initial distribution p

~

L“restriction” ,U|E}

Statement P (

J

Lresult distribution [P] (M)}

» distribution at the start of the program: Dirac(0,...,0)

» ignore normalization in this talk
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Semantics of loops

while E {B}

Fixpoint equation

[while E{B}] (1) = \I;zg + [while E{B}] ([BI (1))

loop exit one iteration
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Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

[while E{P}] (1) = pl-g + [while E{P}] ([P](x|r))
= g+ [Pl(nle)l-e + [while E{PY] (IPI([P](1]E)|x))

J/

-~

=0

= pl-g + [Pl(ple)|-r

» easy to compute: only finite discrete distributions involved
» converges to true distribution with increasing unrolling
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Upper bounds: residual mass
Flow of total probability mass ;(N")
> initially 1
[B](ule) » in every iteration, some mass “flows”

_ out of the loop
oo (5 L

» can bound the residual mass after
unrolling

[[P]]res<:u) = H(Nn) - [[P]]Io(ﬂ)(Nn)
S—— S~ ———

residual mass initial mass  lower bound on mass

The probability of S at the end of the program P is bounded by:

\[[P]](NXS) j\[[P]]Io(:u)(S)I_F [[P]]res(,u)
——

Vv TV
probability of S lower bound residual mass




Residual mass: in practice

10 Resid. mass b.c.)und (0.005 s)

10-° x _Exact probabiitty v/ bounds on probability masses
g 10716 v/ speedup compared to previous work:
S o] 100x to 10°x
g ] X flat tail bounds

Lo X cannot bound moments

— need more informative bounds
075
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Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e ) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

= pl-g +c- [while E{B}] (u)
— (1- ) [while B (B} (1) < ul-s

— [while B {B}] (1) < 1~ ul-»

X The initial distribution p rarely decreases uniformly by a factor of ¢ < 1.
— Find v > p satisfying the condition! (“Strengthen the induction hypothesis”)
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Contraction invariant
> Let P = while E{B} be a loop.
» Let x be an initial distribution on N™,
» A contraction invariant is a distribution v such that

p=v and [B](v|c) X c-vwherec< 1

If v is a contraction invariant for while £ { B} and p then

[while £ {B}] (1) < ——

.y’ﬁE
C

How do we find a contraction invariant?
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Candidates for Contraction Invariants

We need to reason about tails!

pk) =p-(1—p)k Geometric distribution?
v/ moments, tails are easy

X not closed under many program
operations (e.g. increment)

— Generalize!
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Eventually Geometric Distributions (EGDs)

Mh\\\ k0 1 2[3 4

D k o o?
EGD((po p1 p2), _ ) p(k) [ po p1 p2| P2 po
initial block ~ decay rate

0 1 2 3
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Eventually Geometric Distributions (EGDs)

0 2 4 6 8 10

| N —_—
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EGD((po 1 p2), &)

initial block ~ decay rate

pk) [po p1 D2 | P2 o

2

0 1 2 3
0| 20 do,1 go1 -« go1 - a?
11 qp0 q1,1 G11-« gi1- o2
qo,0 40,1 ) , , 7
EGD((qu q11)7<a75)) 2 QI,O'B qul.ﬁ Q1,1-a~5 (J1,1-a2~5
7 7 3| ¢ - 5° q1,1 - B2 qi1- Q- B? R a? - 32

v/ easy to compute probababilities, moments, tail asymptotics

v/ closed under many operations
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Semantics for EGDs
» need a semantics that operates on EGDs & yields upper bounds

» not a function: there may be many valid upper bounds

Geometric bound semantics
[P]e* is a relational semantics on EGDs

(EGD(P, a), EGD((Q7 /@)) c [[P]]geo

» ensures the bound: [P](EGD(P, «)) < EGD(Q, 3)
» reduces to polynomial inequalities in the parameters P, Q, o, 3
» can decide the existence of an upper bound EGD(Q, 3)!



Theoretical results

Soundness: Residual mass semantics and geometric bound semantics are
sound.

Convergence: The bounds for both semantics converge in total variation
distance, as loops are unrolled further and further.*

Existence: We proved some sufficient and some necessary conditions for
the existence of geometric bounds.



Experimental results

Throws := 0;
Die := 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

10°

10—8 4

._.

<
&
8

Probability Mass

10-40

10—16 3

10-24 |

x

Geom. bound, mass-opt. (0.13 s)
—t+— Geom. bound, tail-opt. (0.076 s)
Exact probability

20

40

60 80 100



Experimental results

Throws := 0;
Die = 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

Probability Mass
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—t+— Geom. bound, tail-opt. (0.076 s)
x  Exact probability
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E[Throws] tail
exact 1.5 o((1/3)™)
bounds  [1.4999999999999998, 1.5000008] O(0.34™)
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Applicability
» collected 43 benchmarks from literature
» finds bounds for 37 (85%) of benchmarks
» many could not be automatically analyzed before



Experimental results

Applicability
» collected 43 benchmarks from literature
» finds bounds for 37 (85%) of benchmarks
» many could not be automatically analyzed before

Performance
» running time: usually a few seconds, up to 5 minutes
» quality of bounds: usually very tight; worse for heavy-tailed distributions
» comparison with previous tools: supports more benchmarks, often faster



Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic
Programs with Loops

Lower bounds: unrolling & cutting off loops

Residual mass semantics: flat bound on residual

distribution missed by the lower bound
» faster than previous methods

» bounds on probabilities

,,,,,,

,,,,,

Geometric bound semantics: upper bounds with geometric tails
» operates on EGDs (eventually geometric distributions) —

» contraction invariants: distribution decreases by factor ¢ < 1 each
iteration

» reduces to polynomial inequality constraints

» can bound probabilities, moments, tails

20



Backup slides
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Implementation

Solving polynomial constraints
> existential theory of the reals is decidable
» SMT solvers are usually too slow
» |IPOPT, numerical solver, works well
» numerical results are verified with exact arithmetic
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Implementation

vV VvyYVyYyy

Solving polynomial constraints
existential theory of the reals is decidable
SMT solvers are usually too slow
IPOPT, numerical solver, works well
numerical results are verified with exact arithmetic

Optimizing the bound

want bounds that minimize some objective: expected value / tail decay rate /
use numerical optimization

22



Limitations

Programming language:
» no negative or continuous variables
» some distributions (e.g. Poisson) are difficult to encode

» no symbolic inputs
Geometric bound semantics:
» incompleteness: bounds may not exist

» solving polynomial constraints may be too difficult
» tail bounds do not converge
» correlations between variables cannot be represented

23



More plots
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(d) Coupon collector problem with 5 coupons  (e) Herman'’s self-stabilization with 3 processes
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