
Guaranteed Bounds
on Posterior Distributions

of Discrete Probabilistic Programs
with Loops

Fabian Zaiser1 Andrzej Murawski1 Luke Ong1,2

1University of Oxford 2Nanyang Technological University

POPL, 2025-01-23

1



A probabilistic puzzle

▶ You throw a fair six-sided die repeatedly until you get a 6.
▶ You observe only even numbers during the throws.
▶ What is the expected number of throws (including the 6)

conditioned on this event?
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Probabilistic Programming

Throws := 0;

Die := 0;

whileDie ̸= 6 {
Die ∼ Uniform{1, . . . , 6};
observeDie ∈ {2, 4, 6};
Throws += 1

}

Query: E[Throws ]

Challenges

▶ infinite support
▶ observations & conditioning
▶ unbounded loops

No existing tool for rigorous &
automatic analysis!
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Exact techniques

✓ precise result

✗ often intractable

✗ or require user
annotations

Guaranteed bounds

✓ often applicable

✓ hard guarantees:
P[X = a] ∈ [l, u]

Approximate methods

✓ always applicable

✗ no guarantees

[Beutner et al., PLDI
2022]

Why guaranteed bounds?
→ safety properties (quantitative program verification)

→ ground truth to debug approximate methods
Previous work on guaranteed bounds
✗ has unnecessary overhead for discrete programs

✗ cannot bound moments and tails
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Problem Statement
For a discrete probabilistic program with variables in N,
with conditioning, and with unbounded loops,

we want to automatically find bounds on
▶ its probabilities: P[X = n] ∈ [l, u],
▶ its k-th moments: E[Xk] ∈ [l, u],
▶ its tail asymptotics: P[X = n] ≤ O(cn) for c < 1.

Two approaches

▶ Residual mass semantics
▶ Geometric bound semantics
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Programming Language

Imperative language with discrete variables X1, . . . , Xn taking values in N.

Programs P ::= skip | P1;P2 | Xk += a | Xk −̇= 1 | Xk ∼ Bernoulli(ρ)

| if E {P1} else {P2} | whileE {P} | observeE
Events E ::= Xk = a | ¬E | E1 ∧ E2

where ρ ∈ [0, 1], a ∈ N

Expressivity

▶ Turing complete
▶ Geometric & negative binomial distributions + all finite discrete distributions
▶ some constructs difficult to encode, e.g. Poisson distribution
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Semantics

JP K transforms distributions on the state space Nn:

Initial distribution µ “restriction” µ|E
Event E

Initial distribution µ result distribution JP K(µ)
Statement P

▶ distribution at the start of the program: Dirac(0, . . . , 0)
▶ ignore normalization in this talk
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Semantics of loops

whileE {B}

µ µ|E

JBK(µ|E)µ|¬E

E holds

JBKE fails

Fixpoint equation

JwhileE {B}K (µ) = µ|¬E︸︷︷︸
loop exit

+ JwhileE {B}K (JBK(µ|E)︸ ︷︷ ︸
one iteration

)
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Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

JwhileE {P}K (µ) = µ|¬E + JwhileE {P}K (JP K(µ|E))

= µ|¬E + JP K(µ|E)|¬E + JwhileE {P}K (JP K(JP K(µ|E)|E))︸ ︷︷ ︸
⪰0

⪰ µ|¬E + JP K(µ|E)|¬E

▶ easy to compute: only finite discrete distributions involved
▶ converges to true distribution with increasing unrolling
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Upper bounds: residual mass

whileE {B}
µ µ|¬E

JBK(µ|E)

Flow of total probability mass µ(Nn)

▶ initially 1
▶ in every iteration, some mass “flows”

out of the loop
▶ can bound the residual mass after

unrolling

JP Kres(µ)︸ ︷︷ ︸
residual mass

= µ(Nn)︸ ︷︷ ︸
initial mass

− JP Klo(µ)(Nn)︸ ︷︷ ︸
lower bound on mass

The probability of S at the end of the program P is bounded by:

JP K(µ)(S)︸ ︷︷ ︸
probability of S

⪯ JP Klo(µ)(S)︸ ︷︷ ︸
lower bound

+ JP Kres(µ)︸ ︷︷ ︸
residual mass
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Residual mass: in practice
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Resid. mass bound (0.005 s)
Exact probability ✓ bounds on probability masses

✓ speedup compared to previous work:
100× to 105×

✗ flat tail bounds

✗ cannot bound moments
→ need more informative bounds
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Upper bounds — part 2

whileE {B}
µ µ|¬E

JBK(µ|E)

What if JBK(µ|E) ⪯ µ?

JwhileE {B}K (µ) = µ|¬E + JwhileE {B}K (JBK(µ|E)︸ ︷︷ ︸
⪯c·µ

)

⪯ µ|¬E + c · JwhileE {B}K (µ)

=⇒ (1− c) · JwhileE {B}K (µ) ⪯ µ|¬E

=⇒ JwhileE {B}K (µ) ⪯ 1

1− c
· µ|¬E

✗ The initial distribution µ rarely decreases uniformly by a factor of c < 1.

→ Find ν ⪰ µ satisfying the condition! (“Strengthen the induction hypothesis”)
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Contraction invariant

▶ Let P = whileE {B} be a loop.
▶ Let µ be an initial distribution on Nn.
▶ A contraction invariant is a distribution ν such that

µ ⪯ ν and JBK(ν|C) ⪯ c · ν where c < 1

If ν is a contraction invariant for whileE {B} and µ then

JwhileE {B}K(µ) ⪯ 1

1− c
· ν|¬E

How do we find a contraction invariant?
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Candidates for Contraction Invariants

We need to reason about tails!

p(k) = ρ · (1− ρ)k

0 2 4 6 8 10

Geometric distribution?
✓ moments, tails are easy

✗ not closed under many program
operations (e.g. increment)

→ Generalize!
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Eventually Geometric Distributions (EGDs)

0 2 4 6 8 10

EGD(
(
p0 p1 p2

)︸ ︷︷ ︸
initial block

, α︸︷︷︸
decay rate

)

k 0 1 2 3 4 . . .
p(k) p0 p1 p2 p2α p2α

2 . . .

EGD

((
q0,0 q0,1
q1,0 q1,1

)
, (α, β)

) 0 1 2 3 . . .
0 q0,0 q0,1 q0,1 · α q0,1 · α2 . . .
1 q1,0 q1,1 q1,1 · α q1,1 · α2 . . .
2 q1,0 · β q1,1 · β q1,1 · α · β q1,1 · α2 · β . . .
3 q1,0 · β2 q1,1 · β2 q1,1 · α · β2 q1,1 · α2 · β2 . . .
...

...
...

...
...

. . .

✓ easy to compute probababilities, moments, tail asymptotics

✓ closed under many operations
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Semantics for EGDs
▶ need a semantics that operates on EGDs & yields upper bounds
▶ not a function: there may be many valid upper bounds

Geometric bound semantics
JP Kgeo is a relational semantics on EGDs

(EGD(P,α),EGD(Q,β)) ∈ JP Kgeo

▶ ensures the bound: JP K(EGD(P,α)) ⪯ EGD(Q,β)

▶ reduces to polynomial inequalities in the parameters P,Q,α,β

▶ can decide the existence of an upper bound EGD(Q,β)!

16



Semantics for EGDs
▶ need a semantics that operates on EGDs & yields upper bounds
▶ not a function: there may be many valid upper bounds

Geometric bound semantics
JP Kgeo is a relational semantics on EGDs

(EGD(P,α),EGD(Q,β)) ∈ JP Kgeo

▶ ensures the bound: JP K(EGD(P,α)) ⪯ EGD(Q,β)

▶ reduces to polynomial inequalities in the parameters P,Q,α,β

▶ can decide the existence of an upper bound EGD(Q,β)!

16



Semantics for EGDs
▶ need a semantics that operates on EGDs & yields upper bounds
▶ not a function: there may be many valid upper bounds

Geometric bound semantics
JP Kgeo is a relational semantics on EGDs

(EGD(P,α),EGD(Q,β)) ∈ JP Kgeo

▶ ensures the bound: JP K(EGD(P,α)) ⪯ EGD(Q,β)

▶ reduces to polynomial inequalities in the parameters P,Q,α,β

▶ can decide the existence of an upper bound EGD(Q,β)!

16



Semantics for EGDs
▶ need a semantics that operates on EGDs & yields upper bounds
▶ not a function: there may be many valid upper bounds

Geometric bound semantics
JP Kgeo is a relational semantics on EGDs

(EGD(P,α),EGD(Q,β)) ∈ JP Kgeo

▶ ensures the bound: JP K(EGD(P,α)) ⪯ EGD(Q,β)

▶ reduces to polynomial inequalities in the parameters P,Q,α,β

▶ can decide the existence of an upper bound EGD(Q,β)!

16



Semantics for EGDs
▶ need a semantics that operates on EGDs & yields upper bounds
▶ not a function: there may be many valid upper bounds

Geometric bound semantics
JP Kgeo is a relational semantics on EGDs

(EGD(P,α),EGD(Q,β)) ∈ JP Kgeo

▶ ensures the bound: JP K(EGD(P,α)) ⪯ EGD(Q,β)

▶ reduces to polynomial inequalities in the parameters P,Q,α,β

▶ can decide the existence of an upper bound EGD(Q,β)!

16



Theoretical results

Soundness: Residual mass semantics and geometric bound semantics are
sound.

Convergence: The bounds for both semantics converge in total variation
distance, as loops are unrolled further and further.*

Existence: We proved some sufficient and some necessary conditions for
the existence of geometric bounds.
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Experimental results

Throws := 0;

Die := 0;

whileDie ̸= 6 {
Die ∼ Uniform{1, . . . , 6};
observeDie ∈ {2, 4, 6};
Throws += 1

}
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Geom. bound, tail-opt. (0.076 s)
Exact probability

E[Throws] tail
exact 1.5 Θ((1/3)n)
bounds [1.4999999999999998, 1.5000008] O(0.34n)
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Experimental results

Applicability

▶ collected 43 benchmarks from literature
▶ finds bounds for 37 (85%) of benchmarks
▶ many could not be automatically analyzed before

Performance

▶ running time: usually a few seconds, up to 5 minutes
▶ quality of bounds: usually very tight; worse for heavy-tailed distributions
▶ comparison with previous tools: supports more benchmarks, often faster
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Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic
Programs with Loops

Lower bounds: unrolling & cutting off loops

Residual mass semantics: flat bound on residual
distribution missed by the lower bound
▶ faster than previous methods
▶ bounds on probabilities
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Geometric bound semantics: upper bounds with geometric tails
▶ operates on EGDs (eventually geometric distributions)
▶ contraction invariants: distribution decreases by factor c < 1 each

iteration
▶ reduces to polynomial inequality constraints
▶ can bound probabilities, moments, tails 0 20 40 60 80 100
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Backup slides
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Implementation
Solving polynomial constraints

▶ existential theory of the reals is decidable
▶ SMT solvers are usually too slow
▶ IPOPT, numerical solver, works well
▶ numerical results are verified with exact arithmetic

Optimizing the bound

▶ want bounds that minimize some objective: expected value / tail decay rate /
. . .

▶ use numerical optimization
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Limitations

Programming language:
▶ no negative or continuous variables
▶ some distributions (e.g. Poisson) are difficult to encode
▶ no symbolic inputs
Geometric bound semantics:
▶ incompleteness: bounds may not exist
▶ solving polynomial constraints may be too difficult
▶ tail bounds do not converge
▶ correlations between variables cannot be represented
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More plots
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(a) Geom. counter
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(b) Asym. rand. walk
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(c) Die paradox
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(d) Coupon collector problem with 5 coupons
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(e) Herman’s self-stabilization with 3 processes

Figure: Comparison of the residual mass and geometric bound semantics. Note that the
probability masses (y-axis) are on a logarithmic scale, except for the lowest part, which is
linear so as to include 0.

24


