Guaranteed Bounds
on Posterior Distributions
of Discrete Probabilistic Programs
with Loops

Fabian Zaiser' Andrzej Murawski' Luke Ong'-?

"University of Oxford 2Nanyang Technological University
R e tNOLosicaL

{5 5XFORD \?g UNNERSITY

sssssss

POPL, 2025-01-23

A probabilistic puzzle

» You throw a fair six-sided die repeatedly until you get a 6.
» You observe only even numbers during the throws.

» What is the expected number of throws (including the 6)
conditioned on this event?

S

Probabilistic Programming

Throws := 0;
Die = 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

}
Query: E[Throws]

Probabilistic Programming

Throws := 0;
Die = 0: Challenges
while Die # 6 { » infinite support
Die ~ Uniform{1,...,6}; > observations & conditioning
observe Die € {2,4,6}; » unbounded loops
Throws +=1
}

Query: E[Throws]

Probabilistic Programming

Throws := 0;
Die :=0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

}
Query: E[Throws]

Challenges
» infinite support
» observations & conditioning
» unbounded loops

No existing tool for rigorous &
automatic analysis!

Exact techniques
v/ precise result
X often intractable

X or require user
annotations

Approximate methods
v/ always applicable
X no guarantees

Exact techniques
v/ precise result
X often intractable

X or require user
annotations

Guaranteed bounds

v/ often applicable

v/ hard guarantees:
PX =a] € [I,u]

Approximate methods
v/ always applicable
X no guarantees

Exact techniques
v/ precise result
X often intractable

X or require user
annotations

o0

Guaranteed Bounds for Posterior Inference
Iniversal Probabilistic Programming

[Beutner et al., PLDI
2022]

Guaranteed bounds Approximate methods
v/ often applicable v always applicable
v/ hard guarantees: X no guarantees

PX =a] € [I,u]

Why guaranteed bounds?
— safety properties (quantitative program verification)

— ground truth to debug approximate methods

Exact techniques Guaranteed bounds Approximate methods

v/ precise result v/ often applicable v always applicable
X often intractable v/ hard guarantees: X no guarantees
PX =a] € [I,u]

X or require user
annotations

©©® Why guaranteed bounds?
LR safety properties (quantitative program verification)
— ground truth to debug approximate methods
v Previous work on guaranteed bounds
[Beutﬁér ot al.,“ﬁLDl X has unnecessary overhead for discrete programs

2022] X cannot bound moments and tails

Problem Statement

For a discrete probabilistic program with variables in N,
with conditioning, and with unbounded loops,

Problem Statement

For a discrete probabilistic program with variables in N,
with conditioning, and with unbounded loops,
we want to automatically find bounds on

> its probabilities: P[X = n] € [I, u],
> its k-th moments: E[X*] € [I, u],
» its tail asymptotics: P[X = n] < O(c") for ¢ < 1.

Problem Statement

For a discrete probabilistic program with variables in N,
with conditioning, and with unbounded loops,
we want to automatically find bounds on

> its probabilities: P[X = n] € [I, u],
> its k-th moments: E[X*] € [I, u],
» its tail asymptotics: P[X = n] < O(c") for ¢ < 1.

Two approaches
» Residual mass semantics
» Geometric bound semantics

Programming Language
Imperative language with discrete variables X3, ..., X,, taking values in N.

Programs P ::=skip | P; P2 | X +=a | X, —=1 | X) ~ Bernoulli(p)
| if E{P}else {P} | while E{P} | observe E
Events E::= Xy =a | -E | E1 A By
where p € [0,1], a €N

Programming Language
Imperative language with discrete variables X3, ..., X,, taking values in N.

Programs P ::=skip | P;; P | Xy +=a | X —=1| X ~ Bernoulli(p)
| if E{P,}else {P,} | while E{P} | observe E
Events £ := X, =a | -E | E1 A Ey
where p € [0,1], a €N

Expressivity
» Turing complete
» Geometric & negative binomial distributions + all finite discrete distributions
» some constructs difficult to encode, e.g. Poisson distribution

Semantics

[P] transforms distributions on the state space N":

Event £ {“restriction” L E}

Initial distribution p

Initial distribution ;; ->rement P {resultdistribution [[P]](u)}

Semantics

[P] transforms distributions on the state space N":

Ve

=

Initial distribution p

~N

Event £ [

J

-

-

Initial distribution p

~

L“restriction” ,U|E}

Statement P (

J

Lresult distribution [P] (M)}

» distribution at the start of the program: Dirac(0,...,0)

» ignore normalization in this talk

Semantics of loops

while E {B}

Semantics of loops

while E {B}

Fixpoint equation

[while E{B}] (1) =

Semantics of loops

while E {B}

Fixpoint equation

[while 2 {BY] (1) = ptl-r
loop exit

Semantics of loops

while E {B}

Fixpoint equation

[while E{B}] (1) = \I;zg + [while E{B}] ([BI (1))

loop exit one iteration

Lower bounds — the easy part

Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

[while E{P}] (1) = pl-p + [while E{P}] ([P](ulz))

Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

[while E{P}] (1) = pl-g + [while E{P}] ([P](x|r))
= g+ [Pl(nle)l-e + [while E{PY] (IPI([P](1]E)|x))

J/

-~

=0

Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

[while E{P}] (1) = pl-g + [while E{P}] ([P](x|r))
= g+ [Pl(nle)l-e + [while E{PY] (IPI([P](1]E)|x))

J/

-~

=0

= pl-g + [Pl(ple)|-r

Lower bounds — the easy part

Unroll the loop a few times (Kleene iteration):

[while E{P}] (1) = pl-g + [while E{P}] ([P](x|r))
= g+ [Pl(nle)l-e + [while E{PY] (IPI([P](1]E)|x))

J/

-~

=0

= pl-g + [Pl(ple)|-r

» easy to compute: only finite discrete distributions involved
» converges to true distribution with increasing unrolling

Upper bounds: residual mass

Flow of total probability mass ;(N")

>
[B](¢le) S

oo (5 L

initially 1
in every iteration, some mass “flows”
out of the loop

can bound the residual mass after
unrolling

Upper bounds: residual mass
Flow of total probability mass ;(N")
> initially 1

[B](1]e) » in every iteration, some mass “flows’

_ out of the loop
oo (5 L

» can bound the residual mass after
unrolling

[[P]]res(:u> = /L(Nn) - [[P]]Io(ﬂ)(Nn>
S—— S~ ———

residual mass initial mass lower bound on mass

Upper bounds: residual mass
Flow of total probability mass ;(N")
> initially 1
[B](ule) » in every iteration, some mass “flows”

_ out of the loop
oo (5 L

» can bound the residual mass after
unrolling

[[P]]res<:u) = H(Nn) - [[P]]Io(ﬂ)(Nn)
S—— S~ ———

residual mass initial mass lower bound on mass

The probability of S at the end of the program P is bounded by:

\[[P]](NXS) j\[[P]]Io(:u)(S)I_F [[P]]res(,u)
——

Vv TV
probability of S lower bound residual mass

Residual mass: in practice

10 Resid. mass b.c.)und (0.005 s)

10-° x _Exact probabiitty v/ bounds on probability masses
g 10716 v/ speedup compared to previous work:
S o] 100x to 10°x
g] X flat tail bounds

Lo X cannot bound moments

— need more informative bounds
075

Upper bounds — part 2

[B](xls)

P while E (B} Hlr

Upper bounds — part 2

[B](xls)

P while E (B} Hlr

What if [B] (ul) < u?

Upper bounds — part 2

[B](xls)

P while E (B} Hlr

What if [B](u|g) < c-pfore< 1?

Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

= ptl-g + ¢ - [while E{B}] (1)

Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

= pl-g +c- [while E{B}] (u)
— (1-) [while B (B} (1) < ul-s

Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

= pl-g +c- [while E{B}] (u)
— (1-) [while B (B} (1) < ul-s

— [while B {B}] (1) < 1~ ul-»

Upper bounds — part 2

[B](xls)

What if [B](u|g) < c-pfore< 1?
(e) Hl-p
while E{B}

[while E{B}] (1) = pl-e + [while E{B}] ([B](u|k))

=cp

= pl-g +c- [while E{B}] (u)
— (1-) [while B (B} (1) < ul-s

— [while B {B}] (1) < 1~ ul-»

X The initial distribution p rarely decreases uniformly by a factor of ¢ < 1.
— Find v > p satisfying the condition! (“Strengthen the induction hypothesis”)

Contraction invariant
> Let P = while E{B} be a loop.
» Let x be an initial distribution on N™,
» A contraction invariant is a distribution v such that

p=v and [B](v|c) X c-vwherec< 1

Contraction invariant
> Let P = while E{B} be a loop.
» Let x be an initial distribution on N™,
» A contraction invariant is a distribution v such that

p=v and [B](v|c) X c-vwherec< 1

If v is a contraction invariant for while £ { B} and p then

[while £ {B}] (1) < ——

.y’ﬁE
C

Contraction invariant
> Let P = while E{B} be a loop.
» Let x be an initial distribution on N™,
» A contraction invariant is a distribution v such that

p=v and [B](v|c) X c-vwherec< 1

If v is a contraction invariant for while £ { B} and p then

[while £ {B}] (1) < ——

.y’ﬁE
C

How do we find a contraction invariant?

Candidates for Contraction Invariants

We need to reason about tails!

Candidates for Contraction Invariants

We need to reason about tails!

p(k)=p-(1—p)k Geometric distribution?

Candidates for Contraction Invariants

We need to reason about tails!

pk)=p-(1-p)*

T
10

Geometric distribution?
v/ moments, tails are easy

X not closed under many program
operations (e.g. increment)

Candidates for Contraction Invariants

We need to reason about tails!

pk) =p-(1—p)k Geometric distribution?
v/ moments, tails are easy

X not closed under many program
operations (e.g. increment)

— Generalize!

Eventually Geometric Distributions (EGDs)

Eventually Geometric Distributions (EGDs)

EGD((po 1 p2), &)

initial block ~ decay rate

k|0 1 2|3 4

pk) [po 1 p2 | p2a pac?

Eventually Geometric Distributions (EGDs)

Mh\\\ k0 1 2[3 4

D k o o?
EGD((po p1 p2), _) p(k) [po p1 p2| P2 po
initial block ~ decay rate

0 1 2 3
0 40,0 qo,1 qo,1 - & qo,1 -
1| 1o q1,1 q11 -« qi1-

do0 90,1 : , , 7

EGD<<Q10 q1 1) ’ (Oé,ﬂ)> 2| ao-f - aah Qi B quac
7 7 8| o8 @i | qa-a-B quai-

Eventually Geometric Distributions (EGDs)

0 2 4 6 8 10

| N —_—

1

2 |3

4

EGD((po 1 p2), &)

initial block ~ decay rate

pk) [po p1 D2 | P2 o

2

0 1 2 3
0| 20 do,1 go1 -« go1 - a?
11 qp0 q1,1 G11-« gi1- o2
qo,0 40,1) , , 7
EGD((qu q11)7<a75)) 2 QI,O'B qul.ﬁ Q1,1-a~5 (J1,1-a2~5
7 7 3| ¢ - 5° q1,1 - B2 qi1- Q- B? R a? - 32

v/ easy to compute probababilities, moments, tail asymptotics

v/ closed under many operations

Semantics for EGDs

» need a semantics that operates on EGDs & yields upper bounds
» not a function: there may be many valid upper bounds

Semantics for EGDs

» need a semantics that operates on EGDs & yields upper bounds
» not a function: there may be many valid upper bounds

Geometric bound semantics
[P]e& is a relational semantics on EGDs

(EGD(P,), EGD(Q, 3)) € [P]&*°

Semantics for EGDs

» need a semantics that operates on EGDs & yields upper bounds
» not a function: there may be many valid upper bounds

Geometric bound semantics
[P]e& is a relational semantics on EGDs

(EGD(P,), EGD(Q, 3)) € [P]&*°

» ensures the bound: [P](EGD(P, «)) < EGD(Q, 3)

Semantics for EGDs

» need a semantics that operates on EGDs & yields upper bounds
» not a function: there may be many valid upper bounds

Geometric bound semantics
[P]e& is a relational semantics on EGDs

(EGD(P, a), EGD((Q7 /@)) c [[P]]geo

» ensures the bound: [P](EGD(P,a)) < EGD(Q, 3)
» reduces to polynomial inequalities in the parameters P, Q, o, 3

Semantics for EGDs
» need a semantics that operates on EGDs & yields upper bounds

» not a function: there may be many valid upper bounds

Geometric bound semantics
[P]e* is a relational semantics on EGDs

(EGD(P, a), EGD((Q7 /@)) c [[P]]geo

» ensures the bound: [P](EGD(P, «)) < EGD(Q, 3)
» reduces to polynomial inequalities in the parameters P, Q, o, 3
» can decide the existence of an upper bound EGD(Q, 3)!

Theoretical results

Soundness: Residual mass semantics and geometric bound semantics are
sound.

Convergence: The bounds for both semantics converge in total variation
distance, as loops are unrolled further and further.*

Existence: We proved some sufficient and some necessary conditions for
the existence of geometric bounds.

Experimental results

Throws := 0;
Die := 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

10°

10—8 4

._.

<
&
8

Probability Mass

10-40

10—16 3

10-24 |

x

Geom. bound, mass-opt. (0.13 s)
—t+— Geom. bound, tail-opt. (0.076 s)
Exact probability

20

40

60 80 100

Experimental results

Throws := 0;
Die = 0;
while Die # 6 {

Die ~ Uniform{1,...,6};
observe Die € {2,4,6};
Throws +=1

Probability Mass
=
o
N

._.

<
&
8

Geom. bound, mass-opt. (0.13 s)
—t+— Geom. bound, tail-opt. (0.076 s)
x Exact probability

*HMHMH

i
Hiy
Fbigg, e
it

10740 4
10761, ; : : -
0 20 40 60 80 100
E[Throws] tail
exact 1.5 o((1/3)™)
bounds [1.4999999999999998, 1.5000008] O(0.34™)

Experimental results

Applicability
» collected 43 benchmarks from literature
» finds bounds for 37 (85%) of benchmarks
» many could not be automatically analyzed before

Experimental results

Applicability
» collected 43 benchmarks from literature
» finds bounds for 37 (85%) of benchmarks
» many could not be automatically analyzed before

Performance
» running time: usually a few seconds, up to 5 minutes
» quality of bounds: usually very tight; worse for heavy-tailed distributions
» comparison with previous tools: supports more benchmarks, often faster

Guaranteed Bounds on Posterior Distributions of Discrete Probabilistic
Programs with Loops

Lower bounds: unrolling & cutting off loops

Residual mass semantics: flat bound on residual

distribution missed by the lower bound
» faster than previous methods

» bounds on probabilities

,,,,,,

,,,,,

Geometric bound semantics: upper bounds with geometric tails
» operates on EGDs (eventually geometric distributions) —

» contraction invariants: distribution decreases by factor ¢ < 1 each
iteration

» reduces to polynomial inequality constraints

» can bound probabilities, moments, tails

20

Backup slides

21

Implementation

Solving polynomial constraints
> existential theory of the reals is decidable
» SMT solvers are usually too slow
» |IPOPT, numerical solver, works well
» numerical results are verified with exact arithmetic

22

Implementation

vV VvyYVyYyy

Solving polynomial constraints
existential theory of the reals is decidable
SMT solvers are usually too slow
IPOPT, numerical solver, works well
numerical results are verified with exact arithmetic

Optimizing the bound

want bounds that minimize some objective: expected value / tail decay rate /
use numerical optimization

22

Limitations

Programming language:
» no negative or continuous variables
» some distributions (e.g. Poisson) are difficult to encode

» no symbolic inputs
Geometric bound semantics:
» incompleteness: bounds may not exist

» solving polynomial constraints may be too difficult
» tail bounds do not converge
» correlations between variables cannot be represented

23

More plots

100 10° 100
BN 1 Resid. mass bound (0.0033 s) " Resid. mass bound (0.067 s) ",
10 e 71 Geom. bound, mass-opt. (0.074 s) 102 Y [7 Geom. bound, mass-opt. (0.34 5) 108 e LS
AN —+ Geom. bound, tail-opt. (0.092 s) Mm —— Geom. bound, tail-opt. (0.12 s) e
1070 " x Exact probability 107 ¥ Exactprobability
2 1015 3 o g 1070 B i
g £ 10 ‘ £
210 2 210
3 3 10 3
3 3 3
810 K 2
& & 1010 & 102
10-° 7 Resid. mass bound (0.005 s)
. 10712 10-40 4 771 Geom. bound, mass-opt. (0.13 s)
10~ —+ Geom. bound, tail-opt. (0.076 5)
100 10714 L0 x Exact probability
- 0 01— ; f —
25 50 75 100 125 150 175 200 50 100 150 200 250 0 20 40 60 80 100
Result value

Result value Result value

(a) Geom. counter (b) Asym. rand. walk (c) Die paradox

10° 100
Y 5 " Resid. mass bound (0.51's)
102 hY 104 B — - Geom. bound, mass-opt. (32 s)
N N L N —+— Geom. bound, tail-opt. (13 s)
104 N, A 10-¢
9 9
2 A ™ 8
= =
> 10°° z
3 3
2 Lo 3
g ERCRY
10-10
| Resid. mass bound (0.88 5) 1020
| 77 Geom. bound, mass-opt. (2.9'5)
10729~ Geom. bound, tail-opt. (14 5) 102
o0l : o

0 25 50 75 100 125 150 175 200

0 50 100 150 200 250 300

Result value Result value

(d) Coupon collector problem with 5 coupons (e) Herman'’s self-stabilization with 3 processes

24

